Cargando…
MMViT-Seg: A lightweight transformer and CNN fusion network for COVID-19 segmentation
Background and objective: COVID-19 is a serious threat to human health. Traditional convolutional neural networks (CNNs) can realize medical image segmentation, whilst transformers can be used to perform machine vision tasks, because they have a better ability to capture long-range relationships tha...
Autores principales: | Yang, Yuan, Zhang, Lin, Ren, Lei, Wang, Xiaohan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833855/ https://www.ncbi.nlm.nih.gov/pubmed/36706618 http://dx.doi.org/10.1016/j.cmpb.2023.107348 |
Ejemplares similares
-
SuperMini-seg: An ultra lightweight network for COVID-19 lung infection segmentation from CT images
por: Yang, Yuan, et al.
Publicado: (2023) -
SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2022) -
TranSegNet: Hybrid CNN-Vision Transformers Encoder for Retina Segmentation of Optical Coherence Tomography
por: Zhang, Yiheng, et al.
Publicado: (2023) -
MixSeg: a lightweight and accurate mix structure network for semantic segmentation of apple leaf disease in complex environments
por: Lu, Bibo, et al.
Publicado: (2023) -
SegAE: Unsupervised white matter lesion segmentation from brain MRIs using a CNN autoencoder
por: Atlason, Hans E., et al.
Publicado: (2019)