Cargando…

Polar day syndrome: differences in growth, photosynthetic traits and sink-size patterns between northern and southern Finnish silver birch (Betula pendula Roth) provenances in native and non-native photoperiods

Continuous light (CL) is available throughout the polar day for plants in the Arctic during the growing season, whereas provenances of the same species experience a very different environment with non-CL (NCL) just a few latitudes to the south. Both provenances need to acclimate to climate warming,...

Descripción completa

Detalles Bibliográficos
Autores principales: Tenkanen, Antti, Keinänen, Markku, Oksanen, Elina, Keski-Saari, Sarita, Kontunen-Soppela, Sari
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833867/
https://www.ncbi.nlm.nih.gov/pubmed/36049078
http://dx.doi.org/10.1093/treephys/tpac104
_version_ 1784868332047958016
author Tenkanen, Antti
Keinänen, Markku
Oksanen, Elina
Keski-Saari, Sarita
Kontunen-Soppela, Sari
author_facet Tenkanen, Antti
Keinänen, Markku
Oksanen, Elina
Keski-Saari, Sarita
Kontunen-Soppela, Sari
author_sort Tenkanen, Antti
collection PubMed
description Continuous light (CL) is available throughout the polar day for plants in the Arctic during the growing season, whereas provenances of the same species experience a very different environment with non-CL (NCL) just a few latitudes to the south. Both provenances need to acclimate to climate warming, yet we lack comprehensive understanding of how their growth, photosynthesis and leaf traits differ. Further, the provenances presumably have morphological and physiological adaptations to their native environments and therefore differ in response to photoperiod. We tested the height growth, leaf longevity, biomass accumulation, biomass allocation and rates of gas exchange of northern (67°N) and southern (61°N) Finnish silver birch (Betula pendula Roth) origins in CL- and NCL-treatments in a 4-month chamber experiment. Irrespective of photoperiod, 67°N had higher area-based photosynthetic rate (A(net)), stomatal conductance (g(s)) and relative height growth rate (RGR), but lower stomatal density and fewer branches and leaves than 61°N. Photoperiod affected height growth cessation, biomass and photosynthetic traits, whereas leaf longevity and many leaf functional traits remained unchanged. In CL, both provenances had lower g(s), higher RGR, increased shoot:root ratio and increased sink sizes (more branching, more leaves, increased total plant dry weight) compared with NCL. In NCL, 67°N ceased height growth earlier than in CL, which altered biomass accumulation and distribution patterns. Northern conditions impose challenges for plant growth and physiology. Whether a provenance inhabits and is adapted to an area with or without CL can also affect its response to the changing climate. Northern birches may have adapted to CL and the short growing season with a ‘polar day syndrome’ of traits, including relatively high gas exchange rates with low leaf biomass and growth traits that are mainly limited by the environment and the earlier growth cessation (to avoid frost damage).
format Online
Article
Text
id pubmed-9833867
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-98338672023-01-12 Polar day syndrome: differences in growth, photosynthetic traits and sink-size patterns between northern and southern Finnish silver birch (Betula pendula Roth) provenances in native and non-native photoperiods Tenkanen, Antti Keinänen, Markku Oksanen, Elina Keski-Saari, Sarita Kontunen-Soppela, Sari Tree Physiol Research Paper Continuous light (CL) is available throughout the polar day for plants in the Arctic during the growing season, whereas provenances of the same species experience a very different environment with non-CL (NCL) just a few latitudes to the south. Both provenances need to acclimate to climate warming, yet we lack comprehensive understanding of how their growth, photosynthesis and leaf traits differ. Further, the provenances presumably have morphological and physiological adaptations to their native environments and therefore differ in response to photoperiod. We tested the height growth, leaf longevity, biomass accumulation, biomass allocation and rates of gas exchange of northern (67°N) and southern (61°N) Finnish silver birch (Betula pendula Roth) origins in CL- and NCL-treatments in a 4-month chamber experiment. Irrespective of photoperiod, 67°N had higher area-based photosynthetic rate (A(net)), stomatal conductance (g(s)) and relative height growth rate (RGR), but lower stomatal density and fewer branches and leaves than 61°N. Photoperiod affected height growth cessation, biomass and photosynthetic traits, whereas leaf longevity and many leaf functional traits remained unchanged. In CL, both provenances had lower g(s), higher RGR, increased shoot:root ratio and increased sink sizes (more branching, more leaves, increased total plant dry weight) compared with NCL. In NCL, 67°N ceased height growth earlier than in CL, which altered biomass accumulation and distribution patterns. Northern conditions impose challenges for plant growth and physiology. Whether a provenance inhabits and is adapted to an area with or without CL can also affect its response to the changing climate. Northern birches may have adapted to CL and the short growing season with a ‘polar day syndrome’ of traits, including relatively high gas exchange rates with low leaf biomass and growth traits that are mainly limited by the environment and the earlier growth cessation (to avoid frost damage). Oxford University Press 2022-09-01 /pmc/articles/PMC9833867/ /pubmed/36049078 http://dx.doi.org/10.1093/treephys/tpac104 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Paper
Tenkanen, Antti
Keinänen, Markku
Oksanen, Elina
Keski-Saari, Sarita
Kontunen-Soppela, Sari
Polar day syndrome: differences in growth, photosynthetic traits and sink-size patterns between northern and southern Finnish silver birch (Betula pendula Roth) provenances in native and non-native photoperiods
title Polar day syndrome: differences in growth, photosynthetic traits and sink-size patterns between northern and southern Finnish silver birch (Betula pendula Roth) provenances in native and non-native photoperiods
title_full Polar day syndrome: differences in growth, photosynthetic traits and sink-size patterns between northern and southern Finnish silver birch (Betula pendula Roth) provenances in native and non-native photoperiods
title_fullStr Polar day syndrome: differences in growth, photosynthetic traits and sink-size patterns between northern and southern Finnish silver birch (Betula pendula Roth) provenances in native and non-native photoperiods
title_full_unstemmed Polar day syndrome: differences in growth, photosynthetic traits and sink-size patterns between northern and southern Finnish silver birch (Betula pendula Roth) provenances in native and non-native photoperiods
title_short Polar day syndrome: differences in growth, photosynthetic traits and sink-size patterns between northern and southern Finnish silver birch (Betula pendula Roth) provenances in native and non-native photoperiods
title_sort polar day syndrome: differences in growth, photosynthetic traits and sink-size patterns between northern and southern finnish silver birch (betula pendula roth) provenances in native and non-native photoperiods
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833867/
https://www.ncbi.nlm.nih.gov/pubmed/36049078
http://dx.doi.org/10.1093/treephys/tpac104
work_keys_str_mv AT tenkanenantti polardaysyndromedifferencesingrowthphotosynthetictraitsandsinksizepatternsbetweennorthernandsouthernfinnishsilverbirchbetulapendularothprovenancesinnativeandnonnativephotoperiods
AT keinanenmarkku polardaysyndromedifferencesingrowthphotosynthetictraitsandsinksizepatternsbetweennorthernandsouthernfinnishsilverbirchbetulapendularothprovenancesinnativeandnonnativephotoperiods
AT oksanenelina polardaysyndromedifferencesingrowthphotosynthetictraitsandsinksizepatternsbetweennorthernandsouthernfinnishsilverbirchbetulapendularothprovenancesinnativeandnonnativephotoperiods
AT keskisaarisarita polardaysyndromedifferencesingrowthphotosynthetictraitsandsinksizepatternsbetweennorthernandsouthernfinnishsilverbirchbetulapendularothprovenancesinnativeandnonnativephotoperiods
AT kontunensoppelasari polardaysyndromedifferencesingrowthphotosynthetictraitsandsinksizepatternsbetweennorthernandsouthernfinnishsilverbirchbetulapendularothprovenancesinnativeandnonnativephotoperiods