Cargando…
The molecular evolution of spermatogenesis across mammals
The testis produces gametes through spermatogenesis and evolves rapidly at both the morphological and molecular level in mammals(1–6), probably owing to the evolutionary pressure on males to be reproductively successful(7). However, the molecular evolution of individual spermatogenic cell types acro...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834047/ https://www.ncbi.nlm.nih.gov/pubmed/36544022 http://dx.doi.org/10.1038/s41586-022-05547-7 |
_version_ | 1784868373850488832 |
---|---|
author | Murat, Florent Mbengue, Noe Winge, Sofia Boeg Trefzer, Timo Leushkin, Evgeny Sepp, Mari Cardoso-Moreira, Margarida Schmidt, Julia Schneider, Celine Mößinger, Katharina Brüning, Thoomke Lamanna, Francesco Belles, Meritxell Riera Conrad, Christian Kondova, Ivanela Bontrop, Ronald Behr, Rüdiger Khaitovich, Philipp Pääbo, Svante Marques-Bonet, Tomas Grützner, Frank Almstrup, Kristian Schierup, Mikkel Heide Kaessmann, Henrik |
author_facet | Murat, Florent Mbengue, Noe Winge, Sofia Boeg Trefzer, Timo Leushkin, Evgeny Sepp, Mari Cardoso-Moreira, Margarida Schmidt, Julia Schneider, Celine Mößinger, Katharina Brüning, Thoomke Lamanna, Francesco Belles, Meritxell Riera Conrad, Christian Kondova, Ivanela Bontrop, Ronald Behr, Rüdiger Khaitovich, Philipp Pääbo, Svante Marques-Bonet, Tomas Grützner, Frank Almstrup, Kristian Schierup, Mikkel Heide Kaessmann, Henrik |
author_sort | Murat, Florent |
collection | PubMed |
description | The testis produces gametes through spermatogenesis and evolves rapidly at both the morphological and molecular level in mammals(1–6), probably owing to the evolutionary pressure on males to be reproductively successful(7). However, the molecular evolution of individual spermatogenic cell types across mammals remains largely uncharacterized. Here we report evolutionary analyses of single-nucleus transcriptome data for testes from 11 species that cover the three main mammalian lineages (eutherians, marsupials and monotremes) and birds (the evolutionary outgroup), and include seven primates. We find that the rapid evolution of the testis was driven by accelerated fixation rates of gene expression changes, amino acid substitutions and new genes in late spermatogenic stages, probably facilitated by reduced pleiotropic constraints, haploid selection and transcriptionally permissive chromatin. We identify temporal expression changes of individual genes across species and conserved expression programs controlling ancestral spermatogenic processes. Genes predominantly expressed in spermatogonia (germ cells fuelling spermatogenesis) and Sertoli (somatic support) cells accumulated on X chromosomes during evolution, presumably owing to male-beneficial selective forces. Further work identified transcriptomal differences between X- and Y-bearing spermatids and uncovered that meiotic sex-chromosome inactivation (MSCI) also occurs in monotremes and hence is common to mammalian sex-chromosome systems. Thus, the mechanism of meiotic silencing of unsynapsed chromatin, which underlies MSCI, is an ancestral mammalian feature. Our study illuminates the molecular evolution of spermatogenesis and associated selective forces, and provides a resource for investigating the biology of the testis across mammals. |
format | Online Article Text |
id | pubmed-9834047 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-98340472023-01-13 The molecular evolution of spermatogenesis across mammals Murat, Florent Mbengue, Noe Winge, Sofia Boeg Trefzer, Timo Leushkin, Evgeny Sepp, Mari Cardoso-Moreira, Margarida Schmidt, Julia Schneider, Celine Mößinger, Katharina Brüning, Thoomke Lamanna, Francesco Belles, Meritxell Riera Conrad, Christian Kondova, Ivanela Bontrop, Ronald Behr, Rüdiger Khaitovich, Philipp Pääbo, Svante Marques-Bonet, Tomas Grützner, Frank Almstrup, Kristian Schierup, Mikkel Heide Kaessmann, Henrik Nature Article The testis produces gametes through spermatogenesis and evolves rapidly at both the morphological and molecular level in mammals(1–6), probably owing to the evolutionary pressure on males to be reproductively successful(7). However, the molecular evolution of individual spermatogenic cell types across mammals remains largely uncharacterized. Here we report evolutionary analyses of single-nucleus transcriptome data for testes from 11 species that cover the three main mammalian lineages (eutherians, marsupials and monotremes) and birds (the evolutionary outgroup), and include seven primates. We find that the rapid evolution of the testis was driven by accelerated fixation rates of gene expression changes, amino acid substitutions and new genes in late spermatogenic stages, probably facilitated by reduced pleiotropic constraints, haploid selection and transcriptionally permissive chromatin. We identify temporal expression changes of individual genes across species and conserved expression programs controlling ancestral spermatogenic processes. Genes predominantly expressed in spermatogonia (germ cells fuelling spermatogenesis) and Sertoli (somatic support) cells accumulated on X chromosomes during evolution, presumably owing to male-beneficial selective forces. Further work identified transcriptomal differences between X- and Y-bearing spermatids and uncovered that meiotic sex-chromosome inactivation (MSCI) also occurs in monotremes and hence is common to mammalian sex-chromosome systems. Thus, the mechanism of meiotic silencing of unsynapsed chromatin, which underlies MSCI, is an ancestral mammalian feature. Our study illuminates the molecular evolution of spermatogenesis and associated selective forces, and provides a resource for investigating the biology of the testis across mammals. Nature Publishing Group UK 2022-12-21 2023 /pmc/articles/PMC9834047/ /pubmed/36544022 http://dx.doi.org/10.1038/s41586-022-05547-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Murat, Florent Mbengue, Noe Winge, Sofia Boeg Trefzer, Timo Leushkin, Evgeny Sepp, Mari Cardoso-Moreira, Margarida Schmidt, Julia Schneider, Celine Mößinger, Katharina Brüning, Thoomke Lamanna, Francesco Belles, Meritxell Riera Conrad, Christian Kondova, Ivanela Bontrop, Ronald Behr, Rüdiger Khaitovich, Philipp Pääbo, Svante Marques-Bonet, Tomas Grützner, Frank Almstrup, Kristian Schierup, Mikkel Heide Kaessmann, Henrik The molecular evolution of spermatogenesis across mammals |
title | The molecular evolution of spermatogenesis across mammals |
title_full | The molecular evolution of spermatogenesis across mammals |
title_fullStr | The molecular evolution of spermatogenesis across mammals |
title_full_unstemmed | The molecular evolution of spermatogenesis across mammals |
title_short | The molecular evolution of spermatogenesis across mammals |
title_sort | molecular evolution of spermatogenesis across mammals |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834047/ https://www.ncbi.nlm.nih.gov/pubmed/36544022 http://dx.doi.org/10.1038/s41586-022-05547-7 |
work_keys_str_mv | AT muratflorent themolecularevolutionofspermatogenesisacrossmammals AT mbenguenoe themolecularevolutionofspermatogenesisacrossmammals AT wingesofiaboeg themolecularevolutionofspermatogenesisacrossmammals AT trefzertimo themolecularevolutionofspermatogenesisacrossmammals AT leushkinevgeny themolecularevolutionofspermatogenesisacrossmammals AT seppmari themolecularevolutionofspermatogenesisacrossmammals AT cardosomoreiramargarida themolecularevolutionofspermatogenesisacrossmammals AT schmidtjulia themolecularevolutionofspermatogenesisacrossmammals AT schneiderceline themolecularevolutionofspermatogenesisacrossmammals AT moßingerkatharina themolecularevolutionofspermatogenesisacrossmammals AT bruningthoomke themolecularevolutionofspermatogenesisacrossmammals AT lamannafrancesco themolecularevolutionofspermatogenesisacrossmammals AT bellesmeritxellriera themolecularevolutionofspermatogenesisacrossmammals AT conradchristian themolecularevolutionofspermatogenesisacrossmammals AT kondovaivanela themolecularevolutionofspermatogenesisacrossmammals AT bontropronald themolecularevolutionofspermatogenesisacrossmammals AT behrrudiger themolecularevolutionofspermatogenesisacrossmammals AT khaitovichphilipp themolecularevolutionofspermatogenesisacrossmammals AT paabosvante themolecularevolutionofspermatogenesisacrossmammals AT marquesbonettomas themolecularevolutionofspermatogenesisacrossmammals AT grutznerfrank themolecularevolutionofspermatogenesisacrossmammals AT almstrupkristian themolecularevolutionofspermatogenesisacrossmammals AT schierupmikkelheide themolecularevolutionofspermatogenesisacrossmammals AT kaessmannhenrik themolecularevolutionofspermatogenesisacrossmammals AT muratflorent molecularevolutionofspermatogenesisacrossmammals AT mbenguenoe molecularevolutionofspermatogenesisacrossmammals AT wingesofiaboeg molecularevolutionofspermatogenesisacrossmammals AT trefzertimo molecularevolutionofspermatogenesisacrossmammals AT leushkinevgeny molecularevolutionofspermatogenesisacrossmammals AT seppmari molecularevolutionofspermatogenesisacrossmammals AT cardosomoreiramargarida molecularevolutionofspermatogenesisacrossmammals AT schmidtjulia molecularevolutionofspermatogenesisacrossmammals AT schneiderceline molecularevolutionofspermatogenesisacrossmammals AT moßingerkatharina molecularevolutionofspermatogenesisacrossmammals AT bruningthoomke molecularevolutionofspermatogenesisacrossmammals AT lamannafrancesco molecularevolutionofspermatogenesisacrossmammals AT bellesmeritxellriera molecularevolutionofspermatogenesisacrossmammals AT conradchristian molecularevolutionofspermatogenesisacrossmammals AT kondovaivanela molecularevolutionofspermatogenesisacrossmammals AT bontropronald molecularevolutionofspermatogenesisacrossmammals AT behrrudiger molecularevolutionofspermatogenesisacrossmammals AT khaitovichphilipp molecularevolutionofspermatogenesisacrossmammals AT paabosvante molecularevolutionofspermatogenesisacrossmammals AT marquesbonettomas molecularevolutionofspermatogenesisacrossmammals AT grutznerfrank molecularevolutionofspermatogenesisacrossmammals AT almstrupkristian molecularevolutionofspermatogenesisacrossmammals AT schierupmikkelheide molecularevolutionofspermatogenesisacrossmammals AT kaessmannhenrik molecularevolutionofspermatogenesisacrossmammals |