Cargando…
Multiplexed transcriptome discovery of RNA-binding protein binding sites by antibody-barcode eCLIP
Ultraviolet crosslinking and immunoprecipitation (CLIP) methodologies enable the identification of RNA binding sites of RNA-binding proteins (RBPs). Despite improvements in the library preparation of RNA fragments, the enhanced CLIP (eCLIP) protocol requires 4 days of hands-on time and lacks the abi...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834051/ https://www.ncbi.nlm.nih.gov/pubmed/36550273 http://dx.doi.org/10.1038/s41592-022-01708-8 |
Sumario: | Ultraviolet crosslinking and immunoprecipitation (CLIP) methodologies enable the identification of RNA binding sites of RNA-binding proteins (RBPs). Despite improvements in the library preparation of RNA fragments, the enhanced CLIP (eCLIP) protocol requires 4 days of hands-on time and lacks the ability to process several RBPs in parallel. We present a new method termed antibody-barcode eCLIP that utilizes DNA-barcoded antibodies and proximity ligation of the DNA oligonucleotides to RBP-protected RNA fragments to interrogate several RBPs simultaneously. We observe performance comparable with that of eCLIP with the advantage of dramatically increased scaling while maintaining the same material requirement of a single eCLIP experiment. |
---|