Cargando…
Maximum-likelihood model fitting for quantitative analysis of SMLM data
Quantitative data analysis is important for any single-molecule localization microscopy (SMLM) workflow to extract biological insights from the coordinates of the single fluorophores. However, current approaches are restricted to simple geometries or require identical structures. Here, we present Lo...
Autores principales: | Wu, Yu-Le, Hoess, Philipp, Tschanz, Aline, Matti, Ulf, Mund, Markus, Ries, Jonas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834062/ https://www.ncbi.nlm.nih.gov/pubmed/36522500 http://dx.doi.org/10.1038/s41592-022-01676-z |
Ejemplares similares
-
Universal inverse modelling of point spread functions for SMLM localization and microscope characterization
por: Liu, Sheng, et al.
Publicado: (2023) -
Model Fit after Pairwise Maximum Likelihood
por: Barendse, M. T., et al.
Publicado: (2016) -
Optimal 3D single-molecule localization in real time using experimental point spread functions
por: Li, Yiming, et al.
Publicado: (2018) -
MDT Track Fitting with the Maximum Likelihood Method
por: Deile, M, et al.
Publicado: (1998) -
Parallelization of maximum likelihood fits with OpenMP and CUDA
por: Jarp, S, et al.
Publicado: (2011)