Cargando…
Photo-plasmonic effect as the hot electron generation mechanism
Based on the effective Schrödinger–Poisson model a new physical mechanism for resonant hot-electron generation at irradiated half-space metal–vacuum interface of electron gas with arbitrary degree of degeneracy is proposed. The energy dispersion of undamped plasmons in the coupled Hermitian Schrödin...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834300/ https://www.ncbi.nlm.nih.gov/pubmed/36631539 http://dx.doi.org/10.1038/s41598-023-27775-1 |
_version_ | 1784868431900704768 |
---|---|
author | Akbari-Moghanjoughi, M. |
author_facet | Akbari-Moghanjoughi, M. |
author_sort | Akbari-Moghanjoughi, M. |
collection | PubMed |
description | Based on the effective Schrödinger–Poisson model a new physical mechanism for resonant hot-electron generation at irradiated half-space metal–vacuum interface of electron gas with arbitrary degree of degeneracy is proposed. The energy dispersion of undamped plasmons in the coupled Hermitian Schrödinger–Poisson system reveals an exceptional point coinciding the minimum energy of plasmon conduction band. Existence of such exceptional behavior is a well-know character of damped oscillation which in this case refers to resonant wave–particle interactions analogous to the collisionless Landau damping effect. The damped Schrödinger–Poisson system is used to model the collective electron tunneling into the vacuum. The damped plasmon energy dispersion is shown to have a full-featured exceptional point structure with variety of interesting technological applications. In the band gap of the damped collective excitation,depending on the tunneling parameter value, there is a resonant energy orbital for which the wave-like growing of collective excitations cancels the damping of the single electron tunneling wavefunction. This important feature is solely due to dual-tone wave-particle oscillations, characteristics of the collective excitations in the quantum electron system leading to a resonant photo-plasmonic effect, as a collective analog of the well-known photo-electric effect. The few nanometer wavelengths high-energy collective photo-electrons emanating from the metallic surfaces can lead to a much higher efficiency of plasmonic solar cell devices, as compared to their semiconductor counterpart of electron–hole excitations at the Fermi energy level. The photo-plasmonic effect may also be used to study the quantum electron tunneling and electron spill-out at metallic surfaces. Current findings may help to design more efficient spasers by using the feature-rich plasmonic exceptional point structure. |
format | Online Article Text |
id | pubmed-9834300 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-98343002023-01-13 Photo-plasmonic effect as the hot electron generation mechanism Akbari-Moghanjoughi, M. Sci Rep Article Based on the effective Schrödinger–Poisson model a new physical mechanism for resonant hot-electron generation at irradiated half-space metal–vacuum interface of electron gas with arbitrary degree of degeneracy is proposed. The energy dispersion of undamped plasmons in the coupled Hermitian Schrödinger–Poisson system reveals an exceptional point coinciding the minimum energy of plasmon conduction band. Existence of such exceptional behavior is a well-know character of damped oscillation which in this case refers to resonant wave–particle interactions analogous to the collisionless Landau damping effect. The damped Schrödinger–Poisson system is used to model the collective electron tunneling into the vacuum. The damped plasmon energy dispersion is shown to have a full-featured exceptional point structure with variety of interesting technological applications. In the band gap of the damped collective excitation,depending on the tunneling parameter value, there is a resonant energy orbital for which the wave-like growing of collective excitations cancels the damping of the single electron tunneling wavefunction. This important feature is solely due to dual-tone wave-particle oscillations, characteristics of the collective excitations in the quantum electron system leading to a resonant photo-plasmonic effect, as a collective analog of the well-known photo-electric effect. The few nanometer wavelengths high-energy collective photo-electrons emanating from the metallic surfaces can lead to a much higher efficiency of plasmonic solar cell devices, as compared to their semiconductor counterpart of electron–hole excitations at the Fermi energy level. The photo-plasmonic effect may also be used to study the quantum electron tunneling and electron spill-out at metallic surfaces. Current findings may help to design more efficient spasers by using the feature-rich plasmonic exceptional point structure. Nature Publishing Group UK 2023-01-11 /pmc/articles/PMC9834300/ /pubmed/36631539 http://dx.doi.org/10.1038/s41598-023-27775-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Akbari-Moghanjoughi, M. Photo-plasmonic effect as the hot electron generation mechanism |
title | Photo-plasmonic effect as the hot electron generation mechanism |
title_full | Photo-plasmonic effect as the hot electron generation mechanism |
title_fullStr | Photo-plasmonic effect as the hot electron generation mechanism |
title_full_unstemmed | Photo-plasmonic effect as the hot electron generation mechanism |
title_short | Photo-plasmonic effect as the hot electron generation mechanism |
title_sort | photo-plasmonic effect as the hot electron generation mechanism |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834300/ https://www.ncbi.nlm.nih.gov/pubmed/36631539 http://dx.doi.org/10.1038/s41598-023-27775-1 |
work_keys_str_mv | AT akbarimoghanjoughim photoplasmoniceffectasthehotelectrongenerationmechanism |