Cargando…
Generation of highly realistic microstructural images of alloys from limited data with a style-based generative adversarial network
In materials science, the amount of observational data is often limited by operating protocols that require a high level of expertise, often machine-dependent, developed for a time-consuming integration of valuable data. Scanning electron microscopy (SEM) is one of those methodologies of characteris...
Autores principales: | Lambard, Guillaume, Yamazaki, Kazuhiko, Demura, Masahiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834308/ https://www.ncbi.nlm.nih.gov/pubmed/36631527 http://dx.doi.org/10.1038/s41598-023-27574-8 |
Ejemplares similares
-
Synthesizing realistic high-resolution retina image by style-based generative adversarial network and its utilization
por: Kim, Mingyu, et al.
Publicado: (2022) -
An Image Turing Test on Realistic Gastroscopy Images Generated by Using the Progressive Growing of Generative Adversarial Networks
por: Shin, Keewon, et al.
Publicado: (2023) -
Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images
por: Kazuhiro, Koshino, et al.
Publicado: (2018) -
Generative adversarial networks for image generation
por: Mao, Xudong, et al.
Publicado: (2021) -
Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks
por: Marouf, Mohamed, et al.
Publicado: (2020)