Cargando…
Micro-Computed Tomography (µCT) as a Tool for High-Resolution 3D Imaging and Analysis of Intraocular Lenses: Feasibility and Proof of the Methodology to Evaluate YAG Pits
INTRODUCTION: Posterior capsule opacification (PCO) is the most frequent late sequelae after successful cataract surgery. Neodymium:yttrium aluminum garnet (Nd:YAG) laser capsulotomy is considered the gold standard and a well-accepted, safe, and effective measure in treating PCO. However, iatrogenic...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Healthcare
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834457/ https://www.ncbi.nlm.nih.gov/pubmed/36481844 http://dx.doi.org/10.1007/s40123-022-00622-8 |
Sumario: | INTRODUCTION: Posterior capsule opacification (PCO) is the most frequent late sequelae after successful cataract surgery. Neodymium:yttrium aluminum garnet (Nd:YAG) laser capsulotomy is considered the gold standard and a well-accepted, safe, and effective measure in treating PCO. However, iatrogenic damage of the intraocular lens (IOL) due to inappropriate focusing is a quite common side effect. These permanent defects (YAG pits) can critically affect overall optical quality. METHODS: In this laboratory study, we used the micro-computed tomography (µCT) technique to obtain high-resolution 3D images of the lens and the YAG pits. RESULTS: To the best of our knowledge, this is the first description of a detailed analysis of IOLs with µCT technology. This non-destructive technique seems to be ideal for comparative studies, measuring dimensions of the damage, and visualizing shooting channels within the material. CONCLUSION: µCT is excellently suited to examine an IOL in detail, analyze optics and haptics in three dimensions, and to describe all kinds of changes within the IOL without damaging it. |
---|