Cargando…

The multilevel hierarchical data EM-algorithm. Applications to discrete-time Markov chain epidemic models

The theory of multilevel hierarchical data Expectation Maximization (EM)-algorithm is introduced via discrete time Markov chain (DTMC) epidemic models. A general model for a multilevel hierarchical discrete data is derived. The observed sample Y in the system is a stochastic incomplete data, and the...

Descripción completa

Detalles Bibliográficos
Autor principal: Wanduku, Divine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834773/
https://www.ncbi.nlm.nih.gov/pubmed/36643325
http://dx.doi.org/10.1016/j.heliyon.2022.e12622
_version_ 1784868536035835904
author Wanduku, Divine
author_facet Wanduku, Divine
author_sort Wanduku, Divine
collection PubMed
description The theory of multilevel hierarchical data Expectation Maximization (EM)-algorithm is introduced via discrete time Markov chain (DTMC) epidemic models. A general model for a multilevel hierarchical discrete data is derived. The observed sample Y in the system is a stochastic incomplete data, and the missing data Z exhibits a multilevel hierarchical data structure. The EM-algorithm to find ML-estimates for parameters in the stochastic system is derived. Applications of the EM-algorithm are exhibited in the two DTMC models, to find ML-estimates of the system parameters. Numerical results are given for influenza epidemics in the state of Georgia (GA), USA.
format Online
Article
Text
id pubmed-9834773
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-98347732023-01-13 The multilevel hierarchical data EM-algorithm. Applications to discrete-time Markov chain epidemic models Wanduku, Divine Heliyon Research Article The theory of multilevel hierarchical data Expectation Maximization (EM)-algorithm is introduced via discrete time Markov chain (DTMC) epidemic models. A general model for a multilevel hierarchical discrete data is derived. The observed sample Y in the system is a stochastic incomplete data, and the missing data Z exhibits a multilevel hierarchical data structure. The EM-algorithm to find ML-estimates for parameters in the stochastic system is derived. Applications of the EM-algorithm are exhibited in the two DTMC models, to find ML-estimates of the system parameters. Numerical results are given for influenza epidemics in the state of Georgia (GA), USA. Elsevier 2022-12-22 /pmc/articles/PMC9834773/ /pubmed/36643325 http://dx.doi.org/10.1016/j.heliyon.2022.e12622 Text en © 2023 The Author. Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Wanduku, Divine
The multilevel hierarchical data EM-algorithm. Applications to discrete-time Markov chain epidemic models
title The multilevel hierarchical data EM-algorithm. Applications to discrete-time Markov chain epidemic models
title_full The multilevel hierarchical data EM-algorithm. Applications to discrete-time Markov chain epidemic models
title_fullStr The multilevel hierarchical data EM-algorithm. Applications to discrete-time Markov chain epidemic models
title_full_unstemmed The multilevel hierarchical data EM-algorithm. Applications to discrete-time Markov chain epidemic models
title_short The multilevel hierarchical data EM-algorithm. Applications to discrete-time Markov chain epidemic models
title_sort multilevel hierarchical data em-algorithm. applications to discrete-time markov chain epidemic models
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834773/
https://www.ncbi.nlm.nih.gov/pubmed/36643325
http://dx.doi.org/10.1016/j.heliyon.2022.e12622
work_keys_str_mv AT wandukudivine themultilevelhierarchicaldataemalgorithmapplicationstodiscretetimemarkovchainepidemicmodels
AT wandukudivine multilevelhierarchicaldataemalgorithmapplicationstodiscretetimemarkovchainepidemicmodels