Cargando…

Junction flow inside and around three-row cylindrical group on rigid flat surface

Groups of bluff bodies are widespread in nature and technology. These are the supports of bridge crossings, high-rise buildings in cities, offshore drilling and wind platforms, algae and vegetation in the seas and rivers, forests and other objects. The flow of air or water around such structures has...

Descripción completa

Detalles Bibliográficos
Autores principales: Voskoboinick, Volodymyr, Onyshchenko, Arthur, Voskoboinyk, Oleksandr, Makarenkova, Anastasiia, Voskobiinyk, Andrij
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834775/
https://www.ncbi.nlm.nih.gov/pubmed/36643326
http://dx.doi.org/10.1016/j.heliyon.2022.e12595
_version_ 1784868536527618048
author Voskoboinick, Volodymyr
Onyshchenko, Arthur
Voskoboinyk, Oleksandr
Makarenkova, Anastasiia
Voskobiinyk, Andrij
author_facet Voskoboinick, Volodymyr
Onyshchenko, Arthur
Voskoboinyk, Oleksandr
Makarenkova, Anastasiia
Voskobiinyk, Andrij
author_sort Voskoboinick, Volodymyr
collection PubMed
description Groups of bluff bodies are widespread in nature and technology. These are the supports of bridge crossings, high-rise buildings in cities, offshore drilling and wind platforms, algae and vegetation in the seas and rivers, forests and other objects. The flow of air or water around such structures has a complex vortex and jet character and requires significant efforts in the process of scientific research to improve the environmental situation and reduce material and technical costs in the process of operating such structures. The purpose of the research is study the features of the generation and evolution of vortex and jet flows near and inside the three-row group of cylinders, which are installed on the rigid flat surface. The results of experimental studies showed that the flow around the group of cylinders had a complex unsteady nature, which is due to the interaction of vortex and jet flows typical flow elements with the three-row cylindrical group, which was located installed on the rigid flat surface. The three-row cylindrical group (31 piles with a diameter of 0.027 m) is a model of a bridge support, which was streamlined at a velocity of 0.06 m/s to 0.5 m/s (Reynolds number Re(d)=(1600–6700) and Froude number Fr=(0.04–0.18)). Visual investigations and measurements of the velocity field were carried out inside and around the three-row structure. The features of the formation and evolution of vortex and jet flows inside and near the cylindrical group were established. Integral, spectral and correlation characteristics of the velocity fluctuation field were obtained. Mean, root-mean-square values of velocity and probability density functions of velocity fluctuations integrally displayed the changes in the velocity field in the spatial and temporal domain in the junction area of grillage and plate. The power spectral densities of velocity fluctuations and mutual correlation functions made it possible to study the features of the generation of the velocity fluctuation field in the frequency domain and its interrelationships in space. It was revealed that the velocity field inside the horseshoe vortex structures was multimodal. The spectral levels of velocity fluctuations at the periphery of the quasistable horseshoe vortex structures were higher than in the cores of these structures. The highest levels of the velocity fluctuation spectra were observed in front of the second lateral cylinder where the interaction of the vortex and jet flows took place. Discrete peaks in the spectral levels of velocity fluctuations are found at the frequencies of formation of large-scale wake vortices and the frequencies of formation of small-scale vortex structures of the shear layer, which are due to the Kelvin-Helmholtz instability. It has been established that the frequency of formation of shear layer vortices is (10–40) times higher than the frequency of formation of wake vortices.
format Online
Article
Text
id pubmed-9834775
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-98347752023-01-13 Junction flow inside and around three-row cylindrical group on rigid flat surface Voskoboinick, Volodymyr Onyshchenko, Arthur Voskoboinyk, Oleksandr Makarenkova, Anastasiia Voskobiinyk, Andrij Heliyon Research Article Groups of bluff bodies are widespread in nature and technology. These are the supports of bridge crossings, high-rise buildings in cities, offshore drilling and wind platforms, algae and vegetation in the seas and rivers, forests and other objects. The flow of air or water around such structures has a complex vortex and jet character and requires significant efforts in the process of scientific research to improve the environmental situation and reduce material and technical costs in the process of operating such structures. The purpose of the research is study the features of the generation and evolution of vortex and jet flows near and inside the three-row group of cylinders, which are installed on the rigid flat surface. The results of experimental studies showed that the flow around the group of cylinders had a complex unsteady nature, which is due to the interaction of vortex and jet flows typical flow elements with the three-row cylindrical group, which was located installed on the rigid flat surface. The three-row cylindrical group (31 piles with a diameter of 0.027 m) is a model of a bridge support, which was streamlined at a velocity of 0.06 m/s to 0.5 m/s (Reynolds number Re(d)=(1600–6700) and Froude number Fr=(0.04–0.18)). Visual investigations and measurements of the velocity field were carried out inside and around the three-row structure. The features of the formation and evolution of vortex and jet flows inside and near the cylindrical group were established. Integral, spectral and correlation characteristics of the velocity fluctuation field were obtained. Mean, root-mean-square values of velocity and probability density functions of velocity fluctuations integrally displayed the changes in the velocity field in the spatial and temporal domain in the junction area of grillage and plate. The power spectral densities of velocity fluctuations and mutual correlation functions made it possible to study the features of the generation of the velocity fluctuation field in the frequency domain and its interrelationships in space. It was revealed that the velocity field inside the horseshoe vortex structures was multimodal. The spectral levels of velocity fluctuations at the periphery of the quasistable horseshoe vortex structures were higher than in the cores of these structures. The highest levels of the velocity fluctuation spectra were observed in front of the second lateral cylinder where the interaction of the vortex and jet flows took place. Discrete peaks in the spectral levels of velocity fluctuations are found at the frequencies of formation of large-scale wake vortices and the frequencies of formation of small-scale vortex structures of the shear layer, which are due to the Kelvin-Helmholtz instability. It has been established that the frequency of formation of shear layer vortices is (10–40) times higher than the frequency of formation of wake vortices. Elsevier 2022-12-24 /pmc/articles/PMC9834775/ /pubmed/36643326 http://dx.doi.org/10.1016/j.heliyon.2022.e12595 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Voskoboinick, Volodymyr
Onyshchenko, Arthur
Voskoboinyk, Oleksandr
Makarenkova, Anastasiia
Voskobiinyk, Andrij
Junction flow inside and around three-row cylindrical group on rigid flat surface
title Junction flow inside and around three-row cylindrical group on rigid flat surface
title_full Junction flow inside and around three-row cylindrical group on rigid flat surface
title_fullStr Junction flow inside and around three-row cylindrical group on rigid flat surface
title_full_unstemmed Junction flow inside and around three-row cylindrical group on rigid flat surface
title_short Junction flow inside and around three-row cylindrical group on rigid flat surface
title_sort junction flow inside and around three-row cylindrical group on rigid flat surface
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834775/
https://www.ncbi.nlm.nih.gov/pubmed/36643326
http://dx.doi.org/10.1016/j.heliyon.2022.e12595
work_keys_str_mv AT voskoboinickvolodymyr junctionflowinsideandaroundthreerowcylindricalgrouponrigidflatsurface
AT onyshchenkoarthur junctionflowinsideandaroundthreerowcylindricalgrouponrigidflatsurface
AT voskoboinykoleksandr junctionflowinsideandaroundthreerowcylindricalgrouponrigidflatsurface
AT makarenkovaanastasiia junctionflowinsideandaroundthreerowcylindricalgrouponrigidflatsurface
AT voskobiinykandrij junctionflowinsideandaroundthreerowcylindricalgrouponrigidflatsurface