Cargando…
Machine learning for the prediction of preclinical airway management in injured patients: a registry-based trial
OBJECTIVE: The aim of this study was to determine the feasibility of using machine learning to establish the need for preclinical airway management for injured patients based on a standardized emergency dataset. METHODS: A registry-based, retrospective analysis was conducted of adult trauma patients...
Autores principales: | Luckscheiter, André, Zink, Wolfgang, Lohs, Torsten, Eisenberger, Johanna, Thiel, Manfred, Viergutz, Tim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Emergency Medicine
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834832/ https://www.ncbi.nlm.nih.gov/pubmed/36418016 http://dx.doi.org/10.15441/ceem.22.335 |
Ejemplares similares
-
Orthogonal arrays in normal and injured respiratory airway epithelium
Publicado: (1985) -
Decision support by machine learning systems for acute management of severely injured patients: A systematic review
por: Baur, David, et al.
Publicado: (2022) -
Clinical outcome, recanalization success, and time metrics in drip-and-ship vs. drive-the-doctor: A retrospective analysis of the HEI-LU-Stroke registry
por: Urbanek, Christian, et al.
Publicado: (2023) -
Opto-electromechanical quantification of epithelial barrier function in injured and healthy airway tissues
por: Chen, Jiawen, et al.
Publicado: (2023) -
Telefonreanimation: Selbsteinschätzungen laufen oft ins Leere
por: Marung, Hartwig, et al.
Publicado: (2022)