Cargando…
Bioactive gliadin electrospinning loaded with Zataria multiflora Boiss essential oil: Improves antimicrobial activity and release modeling behavior
This study aimed to produce electrospun gliadin nanofibers containing Zataria multiflora Boiss essential oil (ZMEO) (5, 10, and 15% w/w), thereby developing active, sustained‐release antimicrobial mats. By increasing the level of the ZMEO, the zeta potential and electrical conductivity increased, bu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834846/ https://www.ncbi.nlm.nih.gov/pubmed/36655099 http://dx.doi.org/10.1002/fsn3.3062 |
_version_ | 1784868553587949568 |
---|---|
author | Bahrami, Zohreh Pedram‐Nia, Ahmad Saeidi‐Asl, Mohammadreza Armin, Mohammad Heydari‐Majd, Mojtaba |
author_facet | Bahrami, Zohreh Pedram‐Nia, Ahmad Saeidi‐Asl, Mohammadreza Armin, Mohammad Heydari‐Majd, Mojtaba |
author_sort | Bahrami, Zohreh |
collection | PubMed |
description | This study aimed to produce electrospun gliadin nanofibers containing Zataria multiflora Boiss essential oil (ZMEO) (5, 10, and 15% w/w), thereby developing active, sustained‐release antimicrobial mats. By increasing the level of the ZMEO, the zeta potential and electrical conductivity increased, but the viscosity and consistency index decreased. All feed solutions demonstrated shear‐thinning behavior, and the power law model was the best model. Field emission scanning electron microscopy (FESEM) images proved that the gliadin nanofibers showed a uniform, beaded‐free structure at different levels of ZMEO, with an average diameter of between 403.87 ± 15.29 and 522.19 ± 11.23 nm. Increments in the level of ZMEO decreased the mats' tensile strength and Young's modulus but increased their elongation at break. Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) analysis confirmed that the ZMEO was well loaded within these structures, augmenting its thermal stability. The studied Gram‐negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were more resistant to the ZMEO than the Gram‐positive bacteria (Bacillus cereus and Staphylococcus aureus). The Peleg model was the most suitable model for describing the ZMEO release behavior, the mechanism of which was primarily Fickian diffusion. |
format | Online Article Text |
id | pubmed-9834846 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-98348462023-01-17 Bioactive gliadin electrospinning loaded with Zataria multiflora Boiss essential oil: Improves antimicrobial activity and release modeling behavior Bahrami, Zohreh Pedram‐Nia, Ahmad Saeidi‐Asl, Mohammadreza Armin, Mohammad Heydari‐Majd, Mojtaba Food Sci Nutr Original Articles This study aimed to produce electrospun gliadin nanofibers containing Zataria multiflora Boiss essential oil (ZMEO) (5, 10, and 15% w/w), thereby developing active, sustained‐release antimicrobial mats. By increasing the level of the ZMEO, the zeta potential and electrical conductivity increased, but the viscosity and consistency index decreased. All feed solutions demonstrated shear‐thinning behavior, and the power law model was the best model. Field emission scanning electron microscopy (FESEM) images proved that the gliadin nanofibers showed a uniform, beaded‐free structure at different levels of ZMEO, with an average diameter of between 403.87 ± 15.29 and 522.19 ± 11.23 nm. Increments in the level of ZMEO decreased the mats' tensile strength and Young's modulus but increased their elongation at break. Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) analysis confirmed that the ZMEO was well loaded within these structures, augmenting its thermal stability. The studied Gram‐negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were more resistant to the ZMEO than the Gram‐positive bacteria (Bacillus cereus and Staphylococcus aureus). The Peleg model was the most suitable model for describing the ZMEO release behavior, the mechanism of which was primarily Fickian diffusion. John Wiley and Sons Inc. 2022-11-09 /pmc/articles/PMC9834846/ /pubmed/36655099 http://dx.doi.org/10.1002/fsn3.3062 Text en © 2022 The Authors. Food Science & Nutrition published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Bahrami, Zohreh Pedram‐Nia, Ahmad Saeidi‐Asl, Mohammadreza Armin, Mohammad Heydari‐Majd, Mojtaba Bioactive gliadin electrospinning loaded with Zataria multiflora Boiss essential oil: Improves antimicrobial activity and release modeling behavior |
title | Bioactive gliadin electrospinning loaded with Zataria multiflora Boiss essential oil: Improves antimicrobial activity and release modeling behavior |
title_full | Bioactive gliadin electrospinning loaded with Zataria multiflora Boiss essential oil: Improves antimicrobial activity and release modeling behavior |
title_fullStr | Bioactive gliadin electrospinning loaded with Zataria multiflora Boiss essential oil: Improves antimicrobial activity and release modeling behavior |
title_full_unstemmed | Bioactive gliadin electrospinning loaded with Zataria multiflora Boiss essential oil: Improves antimicrobial activity and release modeling behavior |
title_short | Bioactive gliadin electrospinning loaded with Zataria multiflora Boiss essential oil: Improves antimicrobial activity and release modeling behavior |
title_sort | bioactive gliadin electrospinning loaded with zataria multiflora boiss essential oil: improves antimicrobial activity and release modeling behavior |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834846/ https://www.ncbi.nlm.nih.gov/pubmed/36655099 http://dx.doi.org/10.1002/fsn3.3062 |
work_keys_str_mv | AT bahramizohreh bioactivegliadinelectrospinningloadedwithzatariamultifloraboissessentialoilimprovesantimicrobialactivityandreleasemodelingbehavior AT pedramniaahmad bioactivegliadinelectrospinningloadedwithzatariamultifloraboissessentialoilimprovesantimicrobialactivityandreleasemodelingbehavior AT saeidiaslmohammadreza bioactivegliadinelectrospinningloadedwithzatariamultifloraboissessentialoilimprovesantimicrobialactivityandreleasemodelingbehavior AT arminmohammad bioactivegliadinelectrospinningloadedwithzatariamultifloraboissessentialoilimprovesantimicrobialactivityandreleasemodelingbehavior AT heydarimajdmojtaba bioactivegliadinelectrospinningloadedwithzatariamultifloraboissessentialoilimprovesantimicrobialactivityandreleasemodelingbehavior |