Cargando…
Preparation of Lighting in the Dark and Photochromic Electrospun Glass Nanofiber-Reinforced Epoxy Nanocomposites Immobilized with Alkaline Earth Aluminates
[Image: see text] Alkaline earth aluminates (AEAs) as photoluminescent agents and silicon dioxide-based electrospun glass nanofibers with an average diameter of 150–450 nm as a roughening agent were prepared and applied to reinforce an epoxy resin toward the development of long-persistent photolumin...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835162/ https://www.ncbi.nlm.nih.gov/pubmed/36643554 http://dx.doi.org/10.1021/acsomega.2c07554 |
Sumario: | [Image: see text] Alkaline earth aluminates (AEAs) as photoluminescent agents and silicon dioxide-based electrospun glass nanofibers with an average diameter of 150–450 nm as a roughening agent were prepared and applied to reinforce an epoxy resin toward the development of long-persistent photoluminescent and photochromic smart materials, such as smart windows and anticounterfeiting barcodes. With the physical immobilization of lanthanide-doped aluminate nanoparticles (NPs), a light-induced luminescent transparent glass@epoxy film was developed. The glass@epoxy samples were able to alter their color to green beneath ultraviolet rays and greenish-yellow in the dark, as explored by CIE Lab and luminescence spectral analyses. The morphology of the lanthanide-doped aluminate nanoparticles (43–98 nm) was examined by transmission electron microscopy (TEM). The morphologies and chemical composition of the luminescent glass@epoxy substrates were determined by different analytical techniques. The mechanical properties of the developed photoluminescent glass@epoxy substrates were inspected to show improved scratch resistance as compared to the AEA-free substrate. The photoluminescence spectra were measured to indicate the detection of two emission bands at 494 and 525 nm when excited at 365 nm. The photoluminescent glass@epoxy hybrids with lower AEA contents have showed fast reversibility of photochromism. On the other hand, the glass@epoxy substrates with higher phosphor contents underwent persistent luminescence. Results showed that the luminescent colorless glass@epoxy hybrids have enhanced superhydrophobicity and ultraviolet blocking. |
---|