Cargando…
Machine Learning-Based Quantitative Structure–Property Relationships for the Electronic Properties of Cyano Polycyclic Aromatic Hydrocarbons
[Image: see text] In this study, quantitative structure–property relationships (QSPR) based on a machine learning (ML) methodology and the truncated degree of π-orbital overlap (DPO) to predict the electronic properties, namely, the bandgaps, electron affinities, and ionization potentials of the cya...
Autores principales: | Nguyen, Tuan H., Le, Khang M., Nguyen, Lam H., Truong, Thanh N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835191/ https://www.ncbi.nlm.nih.gov/pubmed/36643419 http://dx.doi.org/10.1021/acsomega.2c05159 |
Ejemplares similares
-
Quantitative Structure–Property Relationships
for the Electronic Properties of Polycyclic Aromatic Hydrocarbons
por: Nguyen, Lam H., et al.
Publicado: (2018) -
Quantum Mechanical-Based Quantitative Structure–Property
Relationships for Electronic Properties of Two Large Classes of Organic
Semiconductor Materials: Polycyclic Aromatic Hydrocarbons and Thienoacenes
por: Nguyen, Lam H., et al.
Publicado: (2019) -
Atom-Based Machine
Learning Model for Quantitative
Property–Structure Relationship of Electronic Properties of
Fusenes and Substituted Fusenes
por: Nguyen, Tuan H., et al.
Publicado: (2023) -
Application of Machine Learning in Developing Quantitative
Structure–Property Relationship for Electronic Properties of
Polyaromatic Compounds
por: Nguyen, Tuan H., et al.
Publicado: (2022) -
Mutagenic and carcinogenic properties of polycyclic aromatic hydrocarbons.
por: Pashin, Y V, et al.
Publicado: (1979)