Cargando…

LncRNA-TBP mediates TATA-binding protein recruitment to regulate myogenesis and induce slow-twitch myofibers

BACKGROUND: Skeletal muscle is comprised of heterogeneous myofibers that differ in their physiological and metabolic parameters. Of these, slow-twitch (type I; oxidative) myofibers have more myoglobin, more mitochondria, and higher activity of oxidative metabolic enzymes compared to fast-twitch (typ...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Manting, Cai, Bolin, Zhou, Zhen, Kong, Shaofen, Zhang, Jing, Xu, Haiping, Zhang, Xiquan, Nie, Qinghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835232/
https://www.ncbi.nlm.nih.gov/pubmed/36635672
http://dx.doi.org/10.1186/s12964-022-01001-3
Descripción
Sumario:BACKGROUND: Skeletal muscle is comprised of heterogeneous myofibers that differ in their physiological and metabolic parameters. Of these, slow-twitch (type I; oxidative) myofibers have more myoglobin, more mitochondria, and higher activity of oxidative metabolic enzymes compared to fast-twitch (type II; glycolytic) myofibers. METHODS: In our previous study, we found a novel LncRNA-TBP (for “LncRNA directly binds TBP transcription factor”) is specifically enriched in the soleus (which has a higher proportion of slow myofibers). The primary myoblast cells and animal model were used to assess the biological function of the LncRNA-TBP in vitro or in vivo. Meanwhile, we performed a RNA immunoprecipitation (RIP) and pull-down analysis to validate this interaction between LncRNA-TBP and TBP. RESULTS: Functional studies demonstrated that LncRNA-TBP inhibits myoblast proliferation but promotes myogenic differentiation in vitro. In vivo, LncRNA-TBP reduces fat deposition, activating slow-twitch muscle phenotype and inducing muscle hypertrophy. Mechanistically, LncRNA-TBP acts as a regulatory RNA that directly interacts with TBP protein to regulate the transcriptional activity of TBP-target genes (such as KLF4, GPI, TNNI2, and CDKN1A). CONCLUSION: Our findings present a novel model about the regulation of LncRNA-TBP, which can regulate the transcriptional activity of TBP-target genes by recruiting TBP protein, thus modulating myogenesis progression and inducing slow-twitch fibers. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12964-022-01001-3.