Cargando…
Misspecification of confounder-exposure and confounder-outcome associations leads to bias in effect estimates
BACKGROUND: Confounding is a common issue in epidemiological research. Commonly used confounder-adjustment methods include multivariable regression analysis and propensity score methods. Although it is common practice to assess the linearity assumption for the exposure-outcome effect, most researche...
Autores principales: | Schuster, Noah A., Rijnhart, Judith J. M., Bosman, Lisa C., Twisk, Jos W. R., Klausch, Thomas, Heymans, Martijn W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835340/ https://www.ncbi.nlm.nih.gov/pubmed/36635655 http://dx.doi.org/10.1186/s12874-022-01817-0 |
Ejemplares similares
-
Noncollapsibility and its role in quantifying confounding bias in logistic regression
por: Schuster, Noah A., et al.
Publicado: (2021) -
Confound-leakage: confound removal in machine learning leads to leakage
por: Hamdan, Sami, et al.
Publicado: (2023) -
Batch Effect Confounding Leads to Strong Bias in Performance Estimates Obtained by Cross-Validation
por: Soneson, Charlotte, et al.
Publicado: (2014) -
Intention-to-treat analysis when only a baseline value is available
por: Twisk, Jos WR., et al.
Publicado: (2020) -
Assessing bias: the importance of considering confounding
por: Skelly, Andrea C., et al.
Publicado: (2012)