Cargando…

A framework for the targeted recruitment of crop-beneficial soil taxa based on network analysis of metagenomics data

BACKGROUND: The design of ecologically sustainable and plant-beneficial soil systems is a key goal in actively manipulating root-associated microbiomes. Community engineering efforts commonly seek to harness the potential of the indigenous microbiome through substrate-mediated recruitment of benefic...

Descripción completa

Detalles Bibliográficos
Autores principales: Berihu, Maria, Somera, Tracey S., Malik, Assaf, Medina, Shlomit, Piombo, Edoardo, Tal, Ofir, Cohen, Matan, Ginatt, Alon, Ofek-Lalzar, Maya, Doron-Faigenboim, Adi, Mazzola, Mark, Freilich, Shiri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835355/
https://www.ncbi.nlm.nih.gov/pubmed/36635724
http://dx.doi.org/10.1186/s40168-022-01438-1
Descripción
Sumario:BACKGROUND: The design of ecologically sustainable and plant-beneficial soil systems is a key goal in actively manipulating root-associated microbiomes. Community engineering efforts commonly seek to harness the potential of the indigenous microbiome through substrate-mediated recruitment of beneficial members. In most sustainable practices, microbial recruitment mechanisms rely on the application of complex organic mixtures where the resources/metabolites that act as direct stimulants of beneficial groups are not characterized. Outcomes of such indirect amendments are unpredictable regarding engineering the microbiome and achieving a plant-beneficial environment. RESULTS: This study applied network analysis of metagenomics data to explore amendment-derived transformations in the soil microbiome, which lead to the suppression of pathogens affecting apple root systems. Shotgun metagenomic analysis was conducted with data from ‘sick’ vs ‘healthy/recovered’ rhizosphere soil microbiomes. The data was then converted into community-level metabolic networks. Simulations examined the functional contribution of treatment-associated taxonomic groups and linked them with specific amendment-induced metabolites. This analysis enabled the selection of specific metabolites that were predicted to amplify or diminish the abundance of targeted microbes functional in the healthy soil system. Many of these predictions were corroborated by experimental evidence from the literature. The potential of two of these metabolites (dopamine and vitamin B(12)) to either stimulate or suppress targeted microbial groups was evaluated in a follow-up set of soil microcosm experiments. The results corroborated the stimulant’s potential (but not the suppressor) to act as a modulator of plant beneficial bacteria, paving the way for future development of knowledge-based (rather than trial and error) metabolic-defined amendments. Our pipeline for generating predictions for the selective targeting of microbial groups based on processing assembled and annotated metagenomics data is available at https://github.com/ot483/NetCom2. CONCLUSIONS: This research demonstrates how genomic-based algorithms can be used to formulate testable hypotheses for strategically engineering the rhizosphere microbiome by identifying specific compounds, which may act as selective modulators of microbial communities. Applying this framework to reduce unpredictable elements in amendment-based solutions promotes the development of ecologically-sound methods for re-establishing a functional microbiome in agro and other ecosystems. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-022-01438-1.