Cargando…
A pairwise strategy for imputing predictive features when combining multiple datasets
MOTIVATION: In the training of predictive models using high-dimensional genomic data, multiple studies’ worth of data are often combined to increase sample size and improve generalizability. A drawback of this approach is that there may be different sets of features measured in each study due to var...
Autores principales: | Wu, Yujie, Ren, Boyu, Patil, Prasad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835467/ https://www.ncbi.nlm.nih.gov/pubmed/36576001 http://dx.doi.org/10.1093/bioinformatics/btac839 |
Ejemplares similares
-
Effect of Variable Selection Strategy on the Performance of Prognostic Models When Using Multiple Imputation
por: Austin, Peter C., et al.
Publicado: (2019) -
Avoiding pitfalls when combining multiple imputation and propensity scores
por: Granger, Emily, et al.
Publicado: (2019) -
Imputation and quality control steps for combining multiple genome-wide datasets
por: Verma, Shefali S., et al.
Publicado: (2014) -
Multiple imputation of multiple multi-item scales when a full imputation model is infeasible
por: Plumpton, Catrin O., et al.
Publicado: (2016) -
Learning with multiple pairwise kernels for drug bioactivity prediction
por: Cichonska, Anna, et al.
Publicado: (2018)