Cargando…
Sc2Mol: a scaffold-based two-step molecule generator with variational autoencoder and transformer
MOTIVATION: Finding molecules with desired pharmaceutical properties is crucial in drug discovery. Generative models can be an efficient tool to find desired molecules through the distribution learned by the model to approximate given training data. Existing generative models (i) do not consider bac...
Autores principales: | Liao, Zhirui, Xie, Lei, Mamitsuka, Hiroshi, Zhu, Shanfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835482/ https://www.ncbi.nlm.nih.gov/pubmed/36576008 http://dx.doi.org/10.1093/bioinformatics/btac814 |
Ejemplares similares
-
ScaffoldGVAE: scaffold generation and hopping of drug molecules via a variational autoencoder based on multi-view graph neural networks
por: Hu, Chao, et al.
Publicado: (2023) -
MetaMHC: a meta approach to predict peptides binding to MHC molecules
por: Hu, Xihao, et al.
Publicado: (2010) -
Variational Autoencoder for Generation of Antimicrobial
Peptides
por: Dean, Scott N., et al.
Publicado: (2020) -
Generating functional protein variants with variational autoencoders
por: Hawkins-Hooker, Alex, et al.
Publicado: (2021) -
TEPITOPEpan: Extending TEPITOPE for Peptide Binding Prediction Covering over 700 HLA-DR Molecules
por: Zhang, Lianming, et al.
Publicado: (2012)