Cargando…
Acting as a Molecular Tailor: Dye Structural Modifications for Improved Sensitivity toward Lysophosphatidic Acids Sensing
[Image: see text] Lysophosphatidic acids (LPA) are key biomarkers for several physiological processes, the monitoring of which can provide insights into the host’s health. Common lab-based techniques for their detection are cumbersome, expensive, and necessitate specialized personnel to operate. LPA...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835520/ https://www.ncbi.nlm.nih.gov/pubmed/36643514 http://dx.doi.org/10.1021/acsomega.2c06420 |
_version_ | 1784868683638636544 |
---|---|
author | Fontaine, Nicolas Harter, Lara Marette, André Boudreau, Denis |
author_facet | Fontaine, Nicolas Harter, Lara Marette, André Boudreau, Denis |
author_sort | Fontaine, Nicolas |
collection | PubMed |
description | [Image: see text] Lysophosphatidic acids (LPA) are key biomarkers for several physiological processes, the monitoring of which can provide insights into the host’s health. Common lab-based techniques for their detection are cumbersome, expensive, and necessitate specialized personnel to operate. LPA-sensitive fluorescent probes have been described, albeit for nonaqueous conditions, which impedes their use in biological matrices. In this paper, we explore in detail the influence of structure on the extent of aggregation-induced fluorescence quenching using specially synthesized styrylpyridinium dyes bearing structural adaptations to bestow them enhanced affinity toward LPA in aqueous media. Spectroscopic investigations supported by time-resolved fluorimetry revealed the contribution of excimer formation to the fluorescence quenching mechanism displayed by the fluorescent probes. Experimental observations of the influence of structure on detection sensitivity were supported by DFT calculations |
format | Online Article Text |
id | pubmed-9835520 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-98355202023-01-13 Acting as a Molecular Tailor: Dye Structural Modifications for Improved Sensitivity toward Lysophosphatidic Acids Sensing Fontaine, Nicolas Harter, Lara Marette, André Boudreau, Denis ACS Omega [Image: see text] Lysophosphatidic acids (LPA) are key biomarkers for several physiological processes, the monitoring of which can provide insights into the host’s health. Common lab-based techniques for their detection are cumbersome, expensive, and necessitate specialized personnel to operate. LPA-sensitive fluorescent probes have been described, albeit for nonaqueous conditions, which impedes their use in biological matrices. In this paper, we explore in detail the influence of structure on the extent of aggregation-induced fluorescence quenching using specially synthesized styrylpyridinium dyes bearing structural adaptations to bestow them enhanced affinity toward LPA in aqueous media. Spectroscopic investigations supported by time-resolved fluorimetry revealed the contribution of excimer formation to the fluorescence quenching mechanism displayed by the fluorescent probes. Experimental observations of the influence of structure on detection sensitivity were supported by DFT calculations American Chemical Society 2022-12-28 /pmc/articles/PMC9835520/ /pubmed/36643514 http://dx.doi.org/10.1021/acsomega.2c06420 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Fontaine, Nicolas Harter, Lara Marette, André Boudreau, Denis Acting as a Molecular Tailor: Dye Structural Modifications for Improved Sensitivity toward Lysophosphatidic Acids Sensing |
title | Acting as a Molecular
Tailor: Dye Structural Modifications
for Improved Sensitivity toward Lysophosphatidic Acids Sensing |
title_full | Acting as a Molecular
Tailor: Dye Structural Modifications
for Improved Sensitivity toward Lysophosphatidic Acids Sensing |
title_fullStr | Acting as a Molecular
Tailor: Dye Structural Modifications
for Improved Sensitivity toward Lysophosphatidic Acids Sensing |
title_full_unstemmed | Acting as a Molecular
Tailor: Dye Structural Modifications
for Improved Sensitivity toward Lysophosphatidic Acids Sensing |
title_short | Acting as a Molecular
Tailor: Dye Structural Modifications
for Improved Sensitivity toward Lysophosphatidic Acids Sensing |
title_sort | acting as a molecular
tailor: dye structural modifications
for improved sensitivity toward lysophosphatidic acids sensing |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835520/ https://www.ncbi.nlm.nih.gov/pubmed/36643514 http://dx.doi.org/10.1021/acsomega.2c06420 |
work_keys_str_mv | AT fontainenicolas actingasamoleculartailordyestructuralmodificationsforimprovedsensitivitytowardlysophosphatidicacidssensing AT harterlara actingasamoleculartailordyestructuralmodificationsforimprovedsensitivitytowardlysophosphatidicacidssensing AT maretteandre actingasamoleculartailordyestructuralmodificationsforimprovedsensitivitytowardlysophosphatidicacidssensing AT boudreaudenis actingasamoleculartailordyestructuralmodificationsforimprovedsensitivitytowardlysophosphatidicacidssensing |