Cargando…
Dysarthria detection based on a deep learning model with a clinically-interpretable layer
Studies have shown deep neural networks (DNN) as a potential tool for classifying dysarthric speakers and controls. However, representations used to train DNNs are largely not clinically interpretable, which limits clinical value. Here, a model with a bottleneck layer is trained to jointly learn a c...
Autores principales: | Xu, Lingfeng, Liss, Julie, Berisha, Visar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Acoustical Society of America
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835557/ https://www.ncbi.nlm.nih.gov/pubmed/36725533 http://dx.doi.org/10.1121/10.0016833 |
Ejemplares similares
-
The multiple hats of a Global Business Economist
por: Balmaseda, Manuel
Publicado: (2022) -
Early Speech and Language Development in Children With Nonsyndromic Cleft Lip and/or Palate: A Meta-Analysis
por: Lancaster, Hope Sparks, et al.
Publicado: (2019) -
A Cross-Sectional, Quantitative Videofluoroscopic Analysis of Swallowing Physiology and Function in Individuals With Amyotrophic Lateral Sclerosis
por: Waito, Ashley A., et al.
Publicado: (2020) -
Speech Movement Variability in People Who Stutter: A Vocal Tract Magnetic Resonance Imaging Study
por: Wiltshire, Charlotte E. E., et al.
Publicado: (2021) -
Respiratory–Swallow Coordination in Healthy Adults During Drinking of Thin to Extremely Thick Liquids: A Research Note
por: Valenzano, Teresa J., et al.
Publicado: (2020)