Cargando…
Identifying oral disease variables associated with pneumonia emergence by application of machine learning to integrated medical and dental big data to inform eHealth approaches
BACKGROUND: The objective of this study was to build models that define variables contributing to pneumonia risk by applying supervised Machine Learning-(ML) to medical and oral disease data to define key risk variables contributing to pneumonia emergence for any pneumonia/pneumonia subtypes. METHOD...
Autores principales: | Shimpi, Neel, Glurich, Ingrid, Panny, Aloksagar, Hegde, Harshad, Scannapieco, Frank A., Acharya, Amit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835559/ https://www.ncbi.nlm.nih.gov/pubmed/36643095 http://dx.doi.org/10.3389/fdmed.2022.1005140 |
Ejemplares similares
-
Development of non-invasive diabetes risk prediction models as decision support tools designed for application in the dental clinical environment
por: Hegde, Harshad, et al.
Publicado: (2019) -
Longitudinal Observation of Outcomes and Patient Access to Integrated Care Following Point-of-Care Glycemic Screening in Community Health Center Dental Safety Net Clinics
por: Glurich, Ingrid, et al.
Publicado: (2021) -
Modeling longitudinal oral health status and pneumonia risk: secondary data analyses of an integrated dental-medical cohort
por: Berg, Richard L., et al.
Publicado: (2023) -
Development and Validation of a Non-Invasive, Chairside Oral Cavity Cancer Risk Assessment Prototype Using Machine Learning Approach
por: Shimpi, Neel, et al.
Publicado: (2022) -
Systematic review of studies examining contribution of oral health variables to risk prediction models for undiagnosed Type 2 diabetes and prediabetes
por: Glurich, Ingrid, et al.
Publicado: (2021)