Cargando…
Predicting Postoperative Anterior Chamber Angle for Phakic Intraocular Lens Implantation Using Preoperative Anterior Segment Metrics
PURPOSE: The anterior chamber angle (ACA) is a critical factor in posterior chamber phakic intraocular lens (EVO Implantable Collamer Lens [ICL]) implantation. Herein, we predicted postoperative ACAs to select the optimal ICL size to reduce narrow ACA-related complications. METHODS: Regression model...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9836008/ https://www.ncbi.nlm.nih.gov/pubmed/36607625 http://dx.doi.org/10.1167/tvst.12.1.10 |
_version_ | 1784868777361408000 |
---|---|
author | Choi, Hannuy Kim, Taein Kim, Su Jeong Sa, Beom Gi Ryu, Ik Hee Lee, In Sik Kim, Jin Kuk Han, Eoksoo Kim, Hong Kyu Yoo, Tae Keun |
author_facet | Choi, Hannuy Kim, Taein Kim, Su Jeong Sa, Beom Gi Ryu, Ik Hee Lee, In Sik Kim, Jin Kuk Han, Eoksoo Kim, Hong Kyu Yoo, Tae Keun |
author_sort | Choi, Hannuy |
collection | PubMed |
description | PURPOSE: The anterior chamber angle (ACA) is a critical factor in posterior chamber phakic intraocular lens (EVO Implantable Collamer Lens [ICL]) implantation. Herein, we predicted postoperative ACAs to select the optimal ICL size to reduce narrow ACA-related complications. METHODS: Regression models were constructed using pre-operative anterior segment optical coherence tomography metrics to predict postoperative ACAs, including trabecular-iris angles (TIAs) and scleral-spur angles (SSAs) at 500 µm and 750 µm from the scleral spur (TIA500, TIA750, SSA500, and SSA750). Data from three expert surgeons were assigned to the development (N = 430 eyes) and internal validation (N = 108 eyes) datasets. Additionally, data from a novice surgeon (N = 42 eyes) were used for external validation. RESULTS: Postoperative ACAs were highly predictable using the machine-learning (ML) technique (extreme gradient boosting regression [XGBoost]), with mean absolute errors (MAEs) of 4.42 degrees, 3.77 degrees, 5.25 degrees, and 4.30 degrees for TIA500, TIA750, SSA500, and SSA750, respectively, in internal validation. External validation also showed MAEs of 3.93 degrees, 3.86 degrees, 5.02 degrees, and 4.74 degrees for TIA500, TIA750, SSA500, and SSA750, respectively. Linear regression using the pre-operative anterior chamber depth, anterior chamber width, crystalline lens rise, TIA, and ICL size also exhibited good performance, with no significant difference compared with XGBoost in the validation sets. CONCLUSIONS: We developed linear regression and ML models to predict postoperative ACAs for ICL surgery anterior segment metrics. These will prevent surgeons from overlooking the risks associated with the narrowing of the ACA. TRANSLATIONAL RELEVANCE: Using the proposed algorithms, surgeons can consider the postoperative ACAs to increase surgical accuracy and safety. |
format | Online Article Text |
id | pubmed-9836008 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-98360082023-01-13 Predicting Postoperative Anterior Chamber Angle for Phakic Intraocular Lens Implantation Using Preoperative Anterior Segment Metrics Choi, Hannuy Kim, Taein Kim, Su Jeong Sa, Beom Gi Ryu, Ik Hee Lee, In Sik Kim, Jin Kuk Han, Eoksoo Kim, Hong Kyu Yoo, Tae Keun Transl Vis Sci Technol Refractive Intervention PURPOSE: The anterior chamber angle (ACA) is a critical factor in posterior chamber phakic intraocular lens (EVO Implantable Collamer Lens [ICL]) implantation. Herein, we predicted postoperative ACAs to select the optimal ICL size to reduce narrow ACA-related complications. METHODS: Regression models were constructed using pre-operative anterior segment optical coherence tomography metrics to predict postoperative ACAs, including trabecular-iris angles (TIAs) and scleral-spur angles (SSAs) at 500 µm and 750 µm from the scleral spur (TIA500, TIA750, SSA500, and SSA750). Data from three expert surgeons were assigned to the development (N = 430 eyes) and internal validation (N = 108 eyes) datasets. Additionally, data from a novice surgeon (N = 42 eyes) were used for external validation. RESULTS: Postoperative ACAs were highly predictable using the machine-learning (ML) technique (extreme gradient boosting regression [XGBoost]), with mean absolute errors (MAEs) of 4.42 degrees, 3.77 degrees, 5.25 degrees, and 4.30 degrees for TIA500, TIA750, SSA500, and SSA750, respectively, in internal validation. External validation also showed MAEs of 3.93 degrees, 3.86 degrees, 5.02 degrees, and 4.74 degrees for TIA500, TIA750, SSA500, and SSA750, respectively. Linear regression using the pre-operative anterior chamber depth, anterior chamber width, crystalline lens rise, TIA, and ICL size also exhibited good performance, with no significant difference compared with XGBoost in the validation sets. CONCLUSIONS: We developed linear regression and ML models to predict postoperative ACAs for ICL surgery anterior segment metrics. These will prevent surgeons from overlooking the risks associated with the narrowing of the ACA. TRANSLATIONAL RELEVANCE: Using the proposed algorithms, surgeons can consider the postoperative ACAs to increase surgical accuracy and safety. The Association for Research in Vision and Ophthalmology 2023-01-06 /pmc/articles/PMC9836008/ /pubmed/36607625 http://dx.doi.org/10.1167/tvst.12.1.10 Text en Copyright 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Refractive Intervention Choi, Hannuy Kim, Taein Kim, Su Jeong Sa, Beom Gi Ryu, Ik Hee Lee, In Sik Kim, Jin Kuk Han, Eoksoo Kim, Hong Kyu Yoo, Tae Keun Predicting Postoperative Anterior Chamber Angle for Phakic Intraocular Lens Implantation Using Preoperative Anterior Segment Metrics |
title | Predicting Postoperative Anterior Chamber Angle for Phakic Intraocular Lens Implantation Using Preoperative Anterior Segment Metrics |
title_full | Predicting Postoperative Anterior Chamber Angle for Phakic Intraocular Lens Implantation Using Preoperative Anterior Segment Metrics |
title_fullStr | Predicting Postoperative Anterior Chamber Angle for Phakic Intraocular Lens Implantation Using Preoperative Anterior Segment Metrics |
title_full_unstemmed | Predicting Postoperative Anterior Chamber Angle for Phakic Intraocular Lens Implantation Using Preoperative Anterior Segment Metrics |
title_short | Predicting Postoperative Anterior Chamber Angle for Phakic Intraocular Lens Implantation Using Preoperative Anterior Segment Metrics |
title_sort | predicting postoperative anterior chamber angle for phakic intraocular lens implantation using preoperative anterior segment metrics |
topic | Refractive Intervention |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9836008/ https://www.ncbi.nlm.nih.gov/pubmed/36607625 http://dx.doi.org/10.1167/tvst.12.1.10 |
work_keys_str_mv | AT choihannuy predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics AT kimtaein predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics AT kimsujeong predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics AT sabeomgi predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics AT ryuikhee predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics AT leeinsik predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics AT kimjinkuk predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics AT haneoksoo predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics AT kimhongkyu predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics AT yootaekeun predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics |