Cargando…

Predicting Postoperative Anterior Chamber Angle for Phakic Intraocular Lens Implantation Using Preoperative Anterior Segment Metrics

PURPOSE: The anterior chamber angle (ACA) is a critical factor in posterior chamber phakic intraocular lens (EVO Implantable Collamer Lens [ICL]) implantation. Herein, we predicted postoperative ACAs to select the optimal ICL size to reduce narrow ACA-related complications. METHODS: Regression model...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Hannuy, Kim, Taein, Kim, Su Jeong, Sa, Beom Gi, Ryu, Ik Hee, Lee, In Sik, Kim, Jin Kuk, Han, Eoksoo, Kim, Hong Kyu, Yoo, Tae Keun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9836008/
https://www.ncbi.nlm.nih.gov/pubmed/36607625
http://dx.doi.org/10.1167/tvst.12.1.10
_version_ 1784868777361408000
author Choi, Hannuy
Kim, Taein
Kim, Su Jeong
Sa, Beom Gi
Ryu, Ik Hee
Lee, In Sik
Kim, Jin Kuk
Han, Eoksoo
Kim, Hong Kyu
Yoo, Tae Keun
author_facet Choi, Hannuy
Kim, Taein
Kim, Su Jeong
Sa, Beom Gi
Ryu, Ik Hee
Lee, In Sik
Kim, Jin Kuk
Han, Eoksoo
Kim, Hong Kyu
Yoo, Tae Keun
author_sort Choi, Hannuy
collection PubMed
description PURPOSE: The anterior chamber angle (ACA) is a critical factor in posterior chamber phakic intraocular lens (EVO Implantable Collamer Lens [ICL]) implantation. Herein, we predicted postoperative ACAs to select the optimal ICL size to reduce narrow ACA-related complications. METHODS: Regression models were constructed using pre-operative anterior segment optical coherence tomography metrics to predict postoperative ACAs, including trabecular-iris angles (TIAs) and scleral-spur angles (SSAs) at 500 µm and 750 µm from the scleral spur (TIA500, TIA750, SSA500, and SSA750). Data from three expert surgeons were assigned to the development (N = 430 eyes) and internal validation (N = 108 eyes) datasets. Additionally, data from a novice surgeon (N = 42 eyes) were used for external validation. RESULTS: Postoperative ACAs were highly predictable using the machine-learning (ML) technique (extreme gradient boosting regression [XGBoost]), with mean absolute errors (MAEs) of 4.42 degrees, 3.77 degrees, 5.25 degrees, and 4.30 degrees for TIA500, TIA750, SSA500, and SSA750, respectively, in internal validation. External validation also showed MAEs of 3.93 degrees, 3.86 degrees, 5.02 degrees, and 4.74 degrees for TIA500, TIA750, SSA500, and SSA750, respectively. Linear regression using the pre-operative anterior chamber depth, anterior chamber width, crystalline lens rise, TIA, and ICL size also exhibited good performance, with no significant difference compared with XGBoost in the validation sets. CONCLUSIONS: We developed linear regression and ML models to predict postoperative ACAs for ICL surgery anterior segment metrics. These will prevent surgeons from overlooking the risks associated with the narrowing of the ACA. TRANSLATIONAL RELEVANCE: Using the proposed algorithms, surgeons can consider the postoperative ACAs to increase surgical accuracy and safety.
format Online
Article
Text
id pubmed-9836008
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Association for Research in Vision and Ophthalmology
record_format MEDLINE/PubMed
spelling pubmed-98360082023-01-13 Predicting Postoperative Anterior Chamber Angle for Phakic Intraocular Lens Implantation Using Preoperative Anterior Segment Metrics Choi, Hannuy Kim, Taein Kim, Su Jeong Sa, Beom Gi Ryu, Ik Hee Lee, In Sik Kim, Jin Kuk Han, Eoksoo Kim, Hong Kyu Yoo, Tae Keun Transl Vis Sci Technol Refractive Intervention PURPOSE: The anterior chamber angle (ACA) is a critical factor in posterior chamber phakic intraocular lens (EVO Implantable Collamer Lens [ICL]) implantation. Herein, we predicted postoperative ACAs to select the optimal ICL size to reduce narrow ACA-related complications. METHODS: Regression models were constructed using pre-operative anterior segment optical coherence tomography metrics to predict postoperative ACAs, including trabecular-iris angles (TIAs) and scleral-spur angles (SSAs) at 500 µm and 750 µm from the scleral spur (TIA500, TIA750, SSA500, and SSA750). Data from three expert surgeons were assigned to the development (N = 430 eyes) and internal validation (N = 108 eyes) datasets. Additionally, data from a novice surgeon (N = 42 eyes) were used for external validation. RESULTS: Postoperative ACAs were highly predictable using the machine-learning (ML) technique (extreme gradient boosting regression [XGBoost]), with mean absolute errors (MAEs) of 4.42 degrees, 3.77 degrees, 5.25 degrees, and 4.30 degrees for TIA500, TIA750, SSA500, and SSA750, respectively, in internal validation. External validation also showed MAEs of 3.93 degrees, 3.86 degrees, 5.02 degrees, and 4.74 degrees for TIA500, TIA750, SSA500, and SSA750, respectively. Linear regression using the pre-operative anterior chamber depth, anterior chamber width, crystalline lens rise, TIA, and ICL size also exhibited good performance, with no significant difference compared with XGBoost in the validation sets. CONCLUSIONS: We developed linear regression and ML models to predict postoperative ACAs for ICL surgery anterior segment metrics. These will prevent surgeons from overlooking the risks associated with the narrowing of the ACA. TRANSLATIONAL RELEVANCE: Using the proposed algorithms, surgeons can consider the postoperative ACAs to increase surgical accuracy and safety. The Association for Research in Vision and Ophthalmology 2023-01-06 /pmc/articles/PMC9836008/ /pubmed/36607625 http://dx.doi.org/10.1167/tvst.12.1.10 Text en Copyright 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
spellingShingle Refractive Intervention
Choi, Hannuy
Kim, Taein
Kim, Su Jeong
Sa, Beom Gi
Ryu, Ik Hee
Lee, In Sik
Kim, Jin Kuk
Han, Eoksoo
Kim, Hong Kyu
Yoo, Tae Keun
Predicting Postoperative Anterior Chamber Angle for Phakic Intraocular Lens Implantation Using Preoperative Anterior Segment Metrics
title Predicting Postoperative Anterior Chamber Angle for Phakic Intraocular Lens Implantation Using Preoperative Anterior Segment Metrics
title_full Predicting Postoperative Anterior Chamber Angle for Phakic Intraocular Lens Implantation Using Preoperative Anterior Segment Metrics
title_fullStr Predicting Postoperative Anterior Chamber Angle for Phakic Intraocular Lens Implantation Using Preoperative Anterior Segment Metrics
title_full_unstemmed Predicting Postoperative Anterior Chamber Angle for Phakic Intraocular Lens Implantation Using Preoperative Anterior Segment Metrics
title_short Predicting Postoperative Anterior Chamber Angle for Phakic Intraocular Lens Implantation Using Preoperative Anterior Segment Metrics
title_sort predicting postoperative anterior chamber angle for phakic intraocular lens implantation using preoperative anterior segment metrics
topic Refractive Intervention
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9836008/
https://www.ncbi.nlm.nih.gov/pubmed/36607625
http://dx.doi.org/10.1167/tvst.12.1.10
work_keys_str_mv AT choihannuy predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics
AT kimtaein predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics
AT kimsujeong predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics
AT sabeomgi predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics
AT ryuikhee predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics
AT leeinsik predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics
AT kimjinkuk predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics
AT haneoksoo predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics
AT kimhongkyu predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics
AT yootaekeun predictingpostoperativeanteriorchamberangleforphakicintraocularlensimplantationusingpreoperativeanteriorsegmentmetrics