Cargando…
Temporal phenomic predictions from unoccupied aerial systems can outperform genomic predictions
A major challenge of genetic improvement and selection is to accurately predict individuals with the highest fitness in a population without direct measurement. Over the last decade, genomic predictions (GP) based on genome-wide markers have become reliable and routine. Now phenotyping technologies,...
Autores principales: | Adak, Alper, Murray, Seth C, Anderson, Steven L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9836347/ https://www.ncbi.nlm.nih.gov/pubmed/36445027 http://dx.doi.org/10.1093/g3journal/jkac294 |
Ejemplares similares
-
Validation of functional polymorphisms affecting maize plant height by unoccupied aerial systems discovers novel temporal phenotypes
por: Adak, Alper, et al.
Publicado: (2021) -
Cumulative temporal vegetation indices from unoccupied aerial systems allow maize (Zea mays L.) hybrid yield to be estimated across environments with fewer flights
por: Chatterjee, Sumantra, et al.
Publicado: (2023) -
Unoccupied aerial system enabled functional modeling of maize height reveals dynamic expression of loci
por: Anderson, Steven L., et al.
Publicado: (2020) -
Phenomic data-facilitated rust and senescence prediction in maize using machine learning algorithms
por: DeSalvio, Aaron J., et al.
Publicado: (2022) -
Global application of an unoccupied aerial vehicle photogrammetry protocol for predicting aboveground biomass in non‐forest ecosystems
por: Cunliffe, Andrew M., et al.
Publicado: (2021)