Cargando…
High-resolution mapping reveals hotspots and sex-biased recombination in Populus trichocarpa
Fine-scale meiotic recombination is fundamental to the outcome of natural and artificial selection. Here, dense genetic mapping and haplotype reconstruction were used to estimate recombination for a full factorial Populus trichocarpa cross of 7 males and 7 females. Genomes of the resulting 49 full-s...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9836356/ https://www.ncbi.nlm.nih.gov/pubmed/36250890 http://dx.doi.org/10.1093/g3journal/jkac269 |
_version_ | 1784868848133996544 |
---|---|
author | Abeyratne, Chanaka Roshan Macaya-Sanz, David Zhou, Ran Barry, Kerrie W Daum, Christopher Haiby, Kathy Lipzen, Anna Stanton, Brian Yoshinaga, Yuko Zane, Matthew Tuskan, Gerald A DiFazio, Stephen P |
author_facet | Abeyratne, Chanaka Roshan Macaya-Sanz, David Zhou, Ran Barry, Kerrie W Daum, Christopher Haiby, Kathy Lipzen, Anna Stanton, Brian Yoshinaga, Yuko Zane, Matthew Tuskan, Gerald A DiFazio, Stephen P |
author_sort | Abeyratne, Chanaka Roshan |
collection | PubMed |
description | Fine-scale meiotic recombination is fundamental to the outcome of natural and artificial selection. Here, dense genetic mapping and haplotype reconstruction were used to estimate recombination for a full factorial Populus trichocarpa cross of 7 males and 7 females. Genomes of the resulting 49 full-sib families (N = 829 offspring) were resequenced, and high-fidelity biallelic SNP/INDELs and pedigree information were used to ascertain allelic phase and impute progeny genotypes to recover gametic haplotypes. The 14 parental genetic maps contained 1,820 SNP/INDELs on average that covered 376.7 Mb of physical length across 19 chromosomes. Comparison of parental and progeny haplotypes allowed fine-scale demarcation of cross-over regions, where 38,846 cross-over events in 1,658 gametes were observed. Cross-over events were positively associated with gene density and negatively associated with GC content and long-terminal repeats. One of the most striking findings was higher rates of cross-overs in males in 8 out of 19 chromosomes. Regions with elevated male cross-over rates had lower gene density and GC content than windows showing no sex bias. High-resolution analysis identified 67 candidate cross-over hotspots spread throughout the genome. DNA sequence motifs enriched in these regions showed striking similarity to those of maize, Arabidopsis, and wheat. These findings, and recombination estimates, will be useful for ongoing efforts to accelerate domestication of this and other biomass feedstocks, as well as future studies investigating broader questions related to evolutionary history, perennial development, phenology, wood formation, vegetative propagation, and dioecy that cannot be studied using annual plant model systems. |
format | Online Article Text |
id | pubmed-9836356 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-98363562023-01-17 High-resolution mapping reveals hotspots and sex-biased recombination in Populus trichocarpa Abeyratne, Chanaka Roshan Macaya-Sanz, David Zhou, Ran Barry, Kerrie W Daum, Christopher Haiby, Kathy Lipzen, Anna Stanton, Brian Yoshinaga, Yuko Zane, Matthew Tuskan, Gerald A DiFazio, Stephen P G3 (Bethesda) Investigation Fine-scale meiotic recombination is fundamental to the outcome of natural and artificial selection. Here, dense genetic mapping and haplotype reconstruction were used to estimate recombination for a full factorial Populus trichocarpa cross of 7 males and 7 females. Genomes of the resulting 49 full-sib families (N = 829 offspring) were resequenced, and high-fidelity biallelic SNP/INDELs and pedigree information were used to ascertain allelic phase and impute progeny genotypes to recover gametic haplotypes. The 14 parental genetic maps contained 1,820 SNP/INDELs on average that covered 376.7 Mb of physical length across 19 chromosomes. Comparison of parental and progeny haplotypes allowed fine-scale demarcation of cross-over regions, where 38,846 cross-over events in 1,658 gametes were observed. Cross-over events were positively associated with gene density and negatively associated with GC content and long-terminal repeats. One of the most striking findings was higher rates of cross-overs in males in 8 out of 19 chromosomes. Regions with elevated male cross-over rates had lower gene density and GC content than windows showing no sex bias. High-resolution analysis identified 67 candidate cross-over hotspots spread throughout the genome. DNA sequence motifs enriched in these regions showed striking similarity to those of maize, Arabidopsis, and wheat. These findings, and recombination estimates, will be useful for ongoing efforts to accelerate domestication of this and other biomass feedstocks, as well as future studies investigating broader questions related to evolutionary history, perennial development, phenology, wood formation, vegetative propagation, and dioecy that cannot be studied using annual plant model systems. Oxford University Press 2022-10-17 /pmc/articles/PMC9836356/ /pubmed/36250890 http://dx.doi.org/10.1093/g3journal/jkac269 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Investigation Abeyratne, Chanaka Roshan Macaya-Sanz, David Zhou, Ran Barry, Kerrie W Daum, Christopher Haiby, Kathy Lipzen, Anna Stanton, Brian Yoshinaga, Yuko Zane, Matthew Tuskan, Gerald A DiFazio, Stephen P High-resolution mapping reveals hotspots and sex-biased recombination in Populus trichocarpa |
title | High-resolution mapping reveals hotspots and sex-biased recombination in Populus trichocarpa |
title_full | High-resolution mapping reveals hotspots and sex-biased recombination in Populus trichocarpa |
title_fullStr | High-resolution mapping reveals hotspots and sex-biased recombination in Populus trichocarpa |
title_full_unstemmed | High-resolution mapping reveals hotspots and sex-biased recombination in Populus trichocarpa |
title_short | High-resolution mapping reveals hotspots and sex-biased recombination in Populus trichocarpa |
title_sort | high-resolution mapping reveals hotspots and sex-biased recombination in populus trichocarpa |
topic | Investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9836356/ https://www.ncbi.nlm.nih.gov/pubmed/36250890 http://dx.doi.org/10.1093/g3journal/jkac269 |
work_keys_str_mv | AT abeyratnechanakaroshan highresolutionmappingrevealshotspotsandsexbiasedrecombinationinpopulustrichocarpa AT macayasanzdavid highresolutionmappingrevealshotspotsandsexbiasedrecombinationinpopulustrichocarpa AT zhouran highresolutionmappingrevealshotspotsandsexbiasedrecombinationinpopulustrichocarpa AT barrykerriew highresolutionmappingrevealshotspotsandsexbiasedrecombinationinpopulustrichocarpa AT daumchristopher highresolutionmappingrevealshotspotsandsexbiasedrecombinationinpopulustrichocarpa AT haibykathy highresolutionmappingrevealshotspotsandsexbiasedrecombinationinpopulustrichocarpa AT lipzenanna highresolutionmappingrevealshotspotsandsexbiasedrecombinationinpopulustrichocarpa AT stantonbrian highresolutionmappingrevealshotspotsandsexbiasedrecombinationinpopulustrichocarpa AT yoshinagayuko highresolutionmappingrevealshotspotsandsexbiasedrecombinationinpopulustrichocarpa AT zanematthew highresolutionmappingrevealshotspotsandsexbiasedrecombinationinpopulustrichocarpa AT tuskangeralda highresolutionmappingrevealshotspotsandsexbiasedrecombinationinpopulustrichocarpa AT difaziostephenp highresolutionmappingrevealshotspotsandsexbiasedrecombinationinpopulustrichocarpa |