Cargando…
Meta-Learned and TCAD-Assisted Sampling in Semiconductor Laser Annealing
[Image: see text] While applying machine learning (ML) to semiconductor manufacturing is prevalent, an efficient way to sample the search space has not been explored much in key processes such as lithography, annealing, deposition, and etching. The aim is to use the fewest experimental trials to con...
Autores principales: | Rawat, Tejender Singh, Chang, Chung Yuan, Feng, Yen-Wei, Chen, ShihWei, Shen, Chang-Hong, Shieh, Jia-Min, Lin, Albert Shihchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9836362/ https://www.ncbi.nlm.nih.gov/pubmed/36643440 http://dx.doi.org/10.1021/acsomega.2c06000 |
Ejemplares similares
-
Neuroevolution-Based Network Architecture Evolution
in Semiconductor Manufacturing
por: Feng, Yen-Wei, et al.
Publicado: (2023) -
3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics
por: Li, Simon, et al.
Publicado: (2012) -
TCAD Librairies
por: Pangaud, P
Publicado: (2018) -
TCAD simulations of pixel sensors for the ATLAS ITk upgrade and performance of annealed planar pixel modules
por: Beyer, J.C., et al.
Publicado: (2018) -
TCAD radiation damage model
por: Passeri, D, et al.
Publicado: (2020)