Cargando…
Spike-specific T cells are enriched in breastmilk following SARS-CoV-2 mRNA vaccination
Human breastmilk is rich in T cells; however, their specificity and function are largely unknown. We compared the phenotype, diversity, and antigen specificity of T cells in breastmilk and peripheral blood of lactating individuals who received SARS-CoV-2 messenger RNA (mRNA) vaccination. Relative to...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9836998/ https://www.ncbi.nlm.nih.gov/pubmed/36642379 http://dx.doi.org/10.1016/j.mucimm.2023.01.003 |
Sumario: | Human breastmilk is rich in T cells; however, their specificity and function are largely unknown. We compared the phenotype, diversity, and antigen specificity of T cells in breastmilk and peripheral blood of lactating individuals who received SARS-CoV-2 messenger RNA (mRNA) vaccination. Relative to blood, breastmilk contained higher frequencies of T effector and central memory populations that expressed mucosal-homing markers. T cell receptor sequence overlap was limited between blood and breastmilk. Overabundant breastmilk clones were observed in all individuals, were diverse, and contained complementarity-determining regions in three sequences with known epitope specificity, including to SARS-CoV-2 spike. SARS-CoV-2 spike-specific T cell receptors were more frequent in breastmilk compared to blood and expanded in breastmilk following a 3(rd) mRNA vaccine dose. Our observations indicate that the lactating breast contains a distinct T cell population that can be modulated by maternal vaccination with potential implications for passive infant protection. |
---|