Cargando…
Non-ergodic extended regime in random matrix ensembles: insights from eigenvalue spectra
The non-ergodic extended (NEE) regime in physical and random matrix (RM) models has attracted a lot of attention in recent years. Formally, NEE regime is characterized by its fractal wavefunctions and long-range spectral correlations such as number variance or spectral form factor. More recently, it...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837147/ https://www.ncbi.nlm.nih.gov/pubmed/36635352 http://dx.doi.org/10.1038/s41598-023-27751-9 |
Sumario: | The non-ergodic extended (NEE) regime in physical and random matrix (RM) models has attracted a lot of attention in recent years. Formally, NEE regime is characterized by its fractal wavefunctions and long-range spectral correlations such as number variance or spectral form factor. More recently, it’s proposed that this regime can be conveniently revealed through the eigenvalue spectra by means of singular-value-decomposition (SVD), whose results display a super-Poissonian behavior that reflects the minibands structure of NEE regime. In this work, we employ SVD to a number of RM models, and show it not only qualitatively reveals the NEE regime, but also quantitatively locates the ergodic-NEE transition point. With SVD, we further suggest the NEE regime in a new RM model–the sparse RM model. |
---|