Cargando…

Non-ergodic extended regime in random matrix ensembles: insights from eigenvalue spectra

The non-ergodic extended (NEE) regime in physical and random matrix (RM) models has attracted a lot of attention in recent years. Formally, NEE regime is characterized by its fractal wavefunctions and long-range spectral correlations such as number variance or spectral form factor. More recently, it...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Wang-Fang, Rao, W. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837147/
https://www.ncbi.nlm.nih.gov/pubmed/36635352
http://dx.doi.org/10.1038/s41598-023-27751-9
Descripción
Sumario:The non-ergodic extended (NEE) regime in physical and random matrix (RM) models has attracted a lot of attention in recent years. Formally, NEE regime is characterized by its fractal wavefunctions and long-range spectral correlations such as number variance or spectral form factor. More recently, it’s proposed that this regime can be conveniently revealed through the eigenvalue spectra by means of singular-value-decomposition (SVD), whose results display a super-Poissonian behavior that reflects the minibands structure of NEE regime. In this work, we employ SVD to a number of RM models, and show it not only qualitatively reveals the NEE regime, but also quantitatively locates the ergodic-NEE transition point. With SVD, we further suggest the NEE regime in a new RM model–the sparse RM model.