Cargando…

Circular RNA circTRPS1-2 inhibits the proliferation and migration of esophageal squamous cell carcinoma by reducing the production of ribosomes

Circular RNAs play important roles in many cancers, including esophageal squamous cell carcinoma (ESCC), but the precise functions of most circular RNAs are poorly understood. Here we detected significant downregulation of circTRPS1-2 in ESCC based on high-throughput sequencing of three pairs of ESC...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Renchang, Chen, Pengxiang, Qu, Chenghao, Liang, Jinghui, Cheng, Yulan, Sun, Zhenguo, Tian, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837173/
https://www.ncbi.nlm.nih.gov/pubmed/36635258
http://dx.doi.org/10.1038/s41420-023-01300-9
Descripción
Sumario:Circular RNAs play important roles in many cancers, including esophageal squamous cell carcinoma (ESCC), but the precise functions of most circular RNAs are poorly understood. Here we detected significant downregulation of circTRPS1-2 in ESCC based on high-throughput sequencing of three pairs of ESCC tissue and adjacent normal tissue, followed by PCR validation with another 30 tissue pairs. Patients with ESCC whose circTRPS1-2 expression was below the median level for the sample showed significantly shorter median overall survival (13 months) than patients whose circTRPS1-2 expression was above the median (36 months). Overexpressing circTRPS1-2 in the human ESCC cell lines K150 and E109, which express low endogenous levels of circTRPS1-2, inhibited cell proliferation and migration. Conversely, knocking down circTRPS1-2 using short interfering RNA promoted cell proliferation and migration. Similar results were observed in mice bearing K150 xenografts in which circTRPS1-2 was overexpressed or knocked down. Several ribosomal proteins co-immunoprecipitated with circTRPS1-2 from K150 cells in culture, and K150 cells overexpressing circTRPS1-2 showed reduced numbers of ribosomes by A260 absorbance measure and electron microscopy. Our results suggest that circTRPS1-2 can inhibit ESCC proliferation and migration by reducing the production of ribosomes, establishing its potential usefulness in ESCC treatment and prediction of prognosis.