Cargando…
A deep learning model for the classification of atrial fibrillation in critically ill patients
BACKGROUND: Atrial fibrillation (AF) is the most common cardiac arrhythmia in the intensive care unit and is associated with increased morbidity and mortality. New-onset atrial fibrillation (NOAF) is often initially paroxysmal and fleeting, making it difficult to diagnose, and therefore difficult to...
Autores principales: | Chen, Brian, Maslove, David M., Curran, Jeffrey D., Hamilton, Alexander, Laird, Philip R., Mousavi, Parvin, Sibley, Stephanie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837355/ https://www.ncbi.nlm.nih.gov/pubmed/36635373 http://dx.doi.org/10.1186/s40635-022-00490-3 |
Ejemplares similares
-
Quantifying deep neural network uncertainty for atrial fibrillation detection with limited labels
por: Chen, Brian, et al.
Publicado: (2022) -
Generalizable deep temporal models for predicting episodes of sudden hypotension in critically ill patients: a personalized approach
por: Chan, Brandon, et al.
Publicado: (2020) -
Optimized Arterial Line Artifact Identification Algorithm Cleans High-Frequency Arterial Line Data With High Accuracy in Critically Ill Patients
por: Khan, Jasmine M., et al.
Publicado: (2022) -
Magnesium prophylaxis of new-onset atrial fibrillation: A systematic review and meta-analysis
por: Curran, Jeffrey, et al.
Publicado: (2023) -
Deep phenotyping: deep learning for temporal phenotype/genotype classification
por: Taghavi Namin, Sarah, et al.
Publicado: (2018)