Cargando…

C1QC, VSIG4, and CFD as Potential Peripheral Blood Biomarkers in Atrial Fibrillation-Related Cardioembolic Stroke

Atrial fibrillation (AF) is a major risk factor for ischemic stroke. We aimed to identify novel potential biomarkers with diagnostic value in patients with atrial fibrillation-related cardioembolic stroke (AF-CE).Publicly available gene expression profiles related to AF, cardioembolic stroke (CE), a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Qian, Xing, Juan, Bai, Fanghui, Shao, Wei, Hou, Kaiqi, Zhang, Shoudu, Hu, Yuanzheng, Zhang, Baochao, Zhao, Hui, Xu, Qian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837713/
https://www.ncbi.nlm.nih.gov/pubmed/36644582
http://dx.doi.org/10.1155/2023/5199810
Descripción
Sumario:Atrial fibrillation (AF) is a major risk factor for ischemic stroke. We aimed to identify novel potential biomarkers with diagnostic value in patients with atrial fibrillation-related cardioembolic stroke (AF-CE).Publicly available gene expression profiles related to AF, cardioembolic stroke (CE), and large artery atherosclerosis (LAA) were downloaded from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified and then functionally annotated. The support vector machine recursive feature elimination (SVM-RFE) and least absolute shrinkage and selection operator (LASSO) regression analysis were conducted to identify potential diagnostic AF-CE biomarkers. Furthermore, the results were validated by using external data sets, and discriminability was measured by the area under the ROC curve (AUC). In order to verify the predictive results, the blood samples of 13 healthy controls, 20 patients with CE, and 20 patients with LAA stroke were acquired for RT-qPCR, and the correlation between biomarkers and clinical features was further explored. Lastly, a nomogram and the companion website were developed to predict the CE-risk rate. Three feature genes (C1QC, VSIG4, and CFD) were selected and validated in the training and the external datasets. The qRT-PCR evaluation showed that the levels of blood biomarkers (C1QC, VSIG4, and CFD) in patients with AF-CE can be used to differentiate patients with AF-CE from normal controls (P < 0.05) and can effectively discriminate AF-CE from LAA stroke (P < 0.05). Immune cell infiltration analysis revealed that three feature genes were correlated with immune system such as neutrophils. Clinical impact curve, calibration curves, ROC, and DCAs of the nomogram indicate that the nomogram had good performance. Our findings showed that C1QC, VSIG4, and CFD can potentially serve as diagnostic blood biomarkers of AF-CE; novel nomogram and the companion website can help clinicians to identify high-risk individuals, thus helping to guide treatment decisions for stroke patients.