Cargando…

Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease

Translating human genetic findings (genome-wide association studies [GWAS]) to pathobiology and therapeutic discovery remains a major challenge for Alzheimer’s disease (AD). We present a network topology-based deep learning framework to identify disease-associated genes (NETTAG). We leverage non-cod...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Jielin, Mao, Chengsheng, Hou, Yuan, Luo, Yuan, Binder, Jessica L., Zhou, Yadi, Bekris, Lynn M., Shin, Jiyoung, Hu, Ming, Wang, Fei, Eng, Charis, Oprea, Tudor I., Flanagan, Margaret E., Pieper, Andrew A., Cummings, Jeffrey, Leverenz, James B., Cheng, Feixiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837836/
https://www.ncbi.nlm.nih.gov/pubmed/36450252
http://dx.doi.org/10.1016/j.celrep.2022.111717
_version_ 1784869158230425600
author Xu, Jielin
Mao, Chengsheng
Hou, Yuan
Luo, Yuan
Binder, Jessica L.
Zhou, Yadi
Bekris, Lynn M.
Shin, Jiyoung
Hu, Ming
Wang, Fei
Eng, Charis
Oprea, Tudor I.
Flanagan, Margaret E.
Pieper, Andrew A.
Cummings, Jeffrey
Leverenz, James B.
Cheng, Feixiong
author_facet Xu, Jielin
Mao, Chengsheng
Hou, Yuan
Luo, Yuan
Binder, Jessica L.
Zhou, Yadi
Bekris, Lynn M.
Shin, Jiyoung
Hu, Ming
Wang, Fei
Eng, Charis
Oprea, Tudor I.
Flanagan, Margaret E.
Pieper, Andrew A.
Cummings, Jeffrey
Leverenz, James B.
Cheng, Feixiong
author_sort Xu, Jielin
collection PubMed
description Translating human genetic findings (genome-wide association studies [GWAS]) to pathobiology and therapeutic discovery remains a major challenge for Alzheimer’s disease (AD). We present a network topology-based deep learning framework to identify disease-associated genes (NETTAG). We leverage non-coding GWAS loci effects on quantitative trait loci, enhancers and CpG islands, promoter regions, open chromatin, and promoter flanking regions under the protein-protein interactome. Via NETTAG, we identified 156 AD-risk genes enriched in druggable targets. Combining network-based prediction and retrospective case-control observations with 10 million individuals, we identified that usage of four drugs (ibuprofen, gemfibrozil, cholecalciferol, and ceftriaxone) is associated with reduced likelihood of AD incidence. Gemfibrozil (an approved lipid regulator) is significantly associated with 43% reduced risk of AD compared with simvastatin using an active-comparator design (95% confidence interval 0.51–0.63, p < 0.0001). In summary, NETTAG offers a deep learning methodology that utilizes GWAS and multi-genomic findings to identify pathobiology and drug repurposing in AD.
format Online
Article
Text
id pubmed-9837836
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-98378362023-01-13 Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease Xu, Jielin Mao, Chengsheng Hou, Yuan Luo, Yuan Binder, Jessica L. Zhou, Yadi Bekris, Lynn M. Shin, Jiyoung Hu, Ming Wang, Fei Eng, Charis Oprea, Tudor I. Flanagan, Margaret E. Pieper, Andrew A. Cummings, Jeffrey Leverenz, James B. Cheng, Feixiong Cell Rep Article Translating human genetic findings (genome-wide association studies [GWAS]) to pathobiology and therapeutic discovery remains a major challenge for Alzheimer’s disease (AD). We present a network topology-based deep learning framework to identify disease-associated genes (NETTAG). We leverage non-coding GWAS loci effects on quantitative trait loci, enhancers and CpG islands, promoter regions, open chromatin, and promoter flanking regions under the protein-protein interactome. Via NETTAG, we identified 156 AD-risk genes enriched in druggable targets. Combining network-based prediction and retrospective case-control observations with 10 million individuals, we identified that usage of four drugs (ibuprofen, gemfibrozil, cholecalciferol, and ceftriaxone) is associated with reduced likelihood of AD incidence. Gemfibrozil (an approved lipid regulator) is significantly associated with 43% reduced risk of AD compared with simvastatin using an active-comparator design (95% confidence interval 0.51–0.63, p < 0.0001). In summary, NETTAG offers a deep learning methodology that utilizes GWAS and multi-genomic findings to identify pathobiology and drug repurposing in AD. 2022-11-29 /pmc/articles/PMC9837836/ /pubmed/36450252 http://dx.doi.org/10.1016/j.celrep.2022.111717 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Xu, Jielin
Mao, Chengsheng
Hou, Yuan
Luo, Yuan
Binder, Jessica L.
Zhou, Yadi
Bekris, Lynn M.
Shin, Jiyoung
Hu, Ming
Wang, Fei
Eng, Charis
Oprea, Tudor I.
Flanagan, Margaret E.
Pieper, Andrew A.
Cummings, Jeffrey
Leverenz, James B.
Cheng, Feixiong
Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease
title Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease
title_full Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease
title_fullStr Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease
title_full_unstemmed Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease
title_short Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease
title_sort interpretable deep learning translation of gwas and multi-omics findings to identify pathobiology and drug repurposing in alzheimer’s disease
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837836/
https://www.ncbi.nlm.nih.gov/pubmed/36450252
http://dx.doi.org/10.1016/j.celrep.2022.111717
work_keys_str_mv AT xujielin interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease
AT maochengsheng interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease
AT houyuan interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease
AT luoyuan interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease
AT binderjessical interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease
AT zhouyadi interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease
AT bekrislynnm interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease
AT shinjiyoung interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease
AT huming interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease
AT wangfei interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease
AT engcharis interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease
AT opreatudori interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease
AT flanaganmargarete interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease
AT pieperandrewa interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease
AT cummingsjeffrey interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease
AT leverenzjamesb interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease
AT chengfeixiong interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease