Cargando…
Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease
Translating human genetic findings (genome-wide association studies [GWAS]) to pathobiology and therapeutic discovery remains a major challenge for Alzheimer’s disease (AD). We present a network topology-based deep learning framework to identify disease-associated genes (NETTAG). We leverage non-cod...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837836/ https://www.ncbi.nlm.nih.gov/pubmed/36450252 http://dx.doi.org/10.1016/j.celrep.2022.111717 |
_version_ | 1784869158230425600 |
---|---|
author | Xu, Jielin Mao, Chengsheng Hou, Yuan Luo, Yuan Binder, Jessica L. Zhou, Yadi Bekris, Lynn M. Shin, Jiyoung Hu, Ming Wang, Fei Eng, Charis Oprea, Tudor I. Flanagan, Margaret E. Pieper, Andrew A. Cummings, Jeffrey Leverenz, James B. Cheng, Feixiong |
author_facet | Xu, Jielin Mao, Chengsheng Hou, Yuan Luo, Yuan Binder, Jessica L. Zhou, Yadi Bekris, Lynn M. Shin, Jiyoung Hu, Ming Wang, Fei Eng, Charis Oprea, Tudor I. Flanagan, Margaret E. Pieper, Andrew A. Cummings, Jeffrey Leverenz, James B. Cheng, Feixiong |
author_sort | Xu, Jielin |
collection | PubMed |
description | Translating human genetic findings (genome-wide association studies [GWAS]) to pathobiology and therapeutic discovery remains a major challenge for Alzheimer’s disease (AD). We present a network topology-based deep learning framework to identify disease-associated genes (NETTAG). We leverage non-coding GWAS loci effects on quantitative trait loci, enhancers and CpG islands, promoter regions, open chromatin, and promoter flanking regions under the protein-protein interactome. Via NETTAG, we identified 156 AD-risk genes enriched in druggable targets. Combining network-based prediction and retrospective case-control observations with 10 million individuals, we identified that usage of four drugs (ibuprofen, gemfibrozil, cholecalciferol, and ceftriaxone) is associated with reduced likelihood of AD incidence. Gemfibrozil (an approved lipid regulator) is significantly associated with 43% reduced risk of AD compared with simvastatin using an active-comparator design (95% confidence interval 0.51–0.63, p < 0.0001). In summary, NETTAG offers a deep learning methodology that utilizes GWAS and multi-genomic findings to identify pathobiology and drug repurposing in AD. |
format | Online Article Text |
id | pubmed-9837836 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-98378362023-01-13 Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease Xu, Jielin Mao, Chengsheng Hou, Yuan Luo, Yuan Binder, Jessica L. Zhou, Yadi Bekris, Lynn M. Shin, Jiyoung Hu, Ming Wang, Fei Eng, Charis Oprea, Tudor I. Flanagan, Margaret E. Pieper, Andrew A. Cummings, Jeffrey Leverenz, James B. Cheng, Feixiong Cell Rep Article Translating human genetic findings (genome-wide association studies [GWAS]) to pathobiology and therapeutic discovery remains a major challenge for Alzheimer’s disease (AD). We present a network topology-based deep learning framework to identify disease-associated genes (NETTAG). We leverage non-coding GWAS loci effects on quantitative trait loci, enhancers and CpG islands, promoter regions, open chromatin, and promoter flanking regions under the protein-protein interactome. Via NETTAG, we identified 156 AD-risk genes enriched in druggable targets. Combining network-based prediction and retrospective case-control observations with 10 million individuals, we identified that usage of four drugs (ibuprofen, gemfibrozil, cholecalciferol, and ceftriaxone) is associated with reduced likelihood of AD incidence. Gemfibrozil (an approved lipid regulator) is significantly associated with 43% reduced risk of AD compared with simvastatin using an active-comparator design (95% confidence interval 0.51–0.63, p < 0.0001). In summary, NETTAG offers a deep learning methodology that utilizes GWAS and multi-genomic findings to identify pathobiology and drug repurposing in AD. 2022-11-29 /pmc/articles/PMC9837836/ /pubmed/36450252 http://dx.doi.org/10.1016/j.celrep.2022.111717 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Xu, Jielin Mao, Chengsheng Hou, Yuan Luo, Yuan Binder, Jessica L. Zhou, Yadi Bekris, Lynn M. Shin, Jiyoung Hu, Ming Wang, Fei Eng, Charis Oprea, Tudor I. Flanagan, Margaret E. Pieper, Andrew A. Cummings, Jeffrey Leverenz, James B. Cheng, Feixiong Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease |
title | Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease |
title_full | Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease |
title_fullStr | Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease |
title_full_unstemmed | Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease |
title_short | Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease |
title_sort | interpretable deep learning translation of gwas and multi-omics findings to identify pathobiology and drug repurposing in alzheimer’s disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837836/ https://www.ncbi.nlm.nih.gov/pubmed/36450252 http://dx.doi.org/10.1016/j.celrep.2022.111717 |
work_keys_str_mv | AT xujielin interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease AT maochengsheng interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease AT houyuan interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease AT luoyuan interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease AT binderjessical interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease AT zhouyadi interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease AT bekrislynnm interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease AT shinjiyoung interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease AT huming interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease AT wangfei interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease AT engcharis interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease AT opreatudori interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease AT flanaganmargarete interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease AT pieperandrewa interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease AT cummingsjeffrey interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease AT leverenzjamesb interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease AT chengfeixiong interpretabledeeplearningtranslationofgwasandmultiomicsfindingstoidentifypathobiologyanddrugrepurposinginalzheimersdisease |