Cargando…
Development of a Small Footprint Device for Measuring Electrodermal Activity in the Palm of the Hand
This paper describes the proof of concept for a wearable device that measures skin conductance, to provide a way of quantifying an individual’s physiological stress response to external stimuli. Important goals of the project were to have reliable measurements that correlate with the external stimul...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sciendo
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837872/ https://www.ncbi.nlm.nih.gov/pubmed/36699665 http://dx.doi.org/10.2478/joeb-2022-0021 |
Sumario: | This paper describes the proof of concept for a wearable device that measures skin conductance, to provide a way of quantifying an individual’s physiological stress response to external stimuli. Important goals of the project were to have reliable measurements that correlate with the external stimuli, as well as a small footprint and low power consumption to facilitate battery powered operation. These goals were accomplished using a STM32L476 micro-controller to generate an AC sine voltage across two solid gel electrodes placed in the palm of the hand, converting the resulting current to a voltage with a trans-impedance amplifier, which was then sampled and processed digitally in a lock-in amplifier, to eliminate signals differing from the desired (reference) frequency and phase. The output of the lock-in amplifier represents the skin conductance and was transmitted over USB to a computer with software for serial capture. |
---|