Cargando…
A hybrid machine learning framework to improve prediction of all-cause rehospitalization among elderly patients in Hong Kong
BACKGROUND: Accurately estimating elderly patients’ rehospitalisation risk benefits clinical decisions and service planning. However, research in rehospitalisation and repeated hospitalisation yielded only models with modest performance, and the model performance deteriorates rapidly as the predicti...
Autores principales: | Guan, Jingjing, Leung, Eman, Kwok, Kin-on, Chen, Frank Youhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837949/ https://www.ncbi.nlm.nih.gov/pubmed/36639745 http://dx.doi.org/10.1186/s12874-022-01824-1 |
Ejemplares similares
-
Correction: A hybrid machine learning framework to improve prediction of all-cause rehospitalization among eldely patients in Hong Kong
por: Guan, Jingjing, et al.
Publicado: (2023) -
Hand hygiene campaign to all the residential care home for elderly (RCHE) in Hong Kong
por: Leung, J, et al.
Publicado: (2015) -
Robust meal delivery service for the elderly: a case study in Hong Kong
por: Lin, Shaochong, et al.
Publicado: (2022) -
Influencing factors of Barthel index scores among the community-dwelling elderly in Hong Kong: a random intercept model
por: Pan, Hao, et al.
Publicado: (2021) -
Perceptions of the elderly on ageing in place in Hong Kong
por: Wong, Kris Wai-ning, et al.
Publicado: (2015)