Cargando…
Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism
BACKGROUND: Correctly identifying the driver genes that promote cell growth can significantly assist drug design, cancer diagnosis and treatment. The recent large-scale cancer genomics projects have revealed multi-omics data from thousands of cancer patients, which requires to design effective model...
Autores principales: | Peng, Wei, Wu, Rong, Dai, Wei, Yu, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838012/ https://www.ncbi.nlm.nih.gov/pubmed/36639646 http://dx.doi.org/10.1186/s12859-023-05140-3 |
Ejemplares similares
-
Multi-View Feature Enhancement Based on Self-Attention Mechanism Graph Convolutional Network for Autism Spectrum Disorder Diagnosis
por: Zhao, Feng, et al.
Publicado: (2022) -
Multi-View Spatial-Temporal Graph Convolutional Networks With Domain Generalization for Sleep Stage Classification
por: Jia, Ziyu, et al.
Publicado: (2021) -
Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network
por: Cao, Ruifen, et al.
Publicado: (2022) -
Multi-Head Spatiotemporal Attention Graph Convolutional Network for Traffic Prediction
por: Oluwasanmi, Ariyo, et al.
Publicado: (2023) -
A heterogeneous graph convolutional attention network method for classification of autism spectrum disorder
por: Shao, Lizhen, et al.
Publicado: (2023)