Cargando…
Computed tomography-based radiomics machine learning models for prediction of histological invasiveness with sub-centimeter subsolid pulmonary nodules: a retrospective study
To improve the accuracy of preoperative diagnoses and avoid over- or undertreatment, we aimed to develop and compare computed tomography-based radiomics machine learning models for the prediction of histological invasiveness using sub-centimeter subsolid pulmonary nodules. Three predictive models ba...
Autores principales: | Zhang, Haochuan, Wang, Shixiong, Deng, Zhenkai, Li, Yangli, Yang, Yingying, Huang, He |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838201/ https://www.ncbi.nlm.nih.gov/pubmed/36643621 http://dx.doi.org/10.7717/peerj.14559 |
Ejemplares similares
-
Prediction of subsolid pulmonary nodule growth rate using radiomics
por: Ma, Zong Jing, et al.
Publicado: (2023) -
Ultrasound Radiomics Nomogram to Diagnose Sub-Centimeter Thyroid Nodules Based on ACR TI-RADS
por: Lu, Wenwu, et al.
Publicado: (2022) -
Implementation of artificial intelligence in the histological assessment of pulmonary subsolid nodules
por: Deng, Jiajun, et al.
Publicado: (2021) -
Preoperative computed tomography-guided coil localization of sub-centimeter lung nodules
por: Gao, Yong-Guang, et al.
Publicado: (2021) -
Computed tomography-guided core needle biopsy for sub-centimeter pulmonary nodules
por: Hui, Hui, et al.
Publicado: (2022)