Cargando…
A data integration framework for spatial interpolation of temperature observations using climate model data
Meteorological station measurements are an important source of information for understanding the weather and its association with risk, and are vital in quantifying climate change. However, such data tend to lack spatial coverage and are often plagued with flaws such as erroneous outliers and missin...
Autores principales: | Economou, Theo, Lazoglou, Georgia, Tzyrkalli, Anna, Constantinidou, Katiana, Lelieveld, Jos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838203/ https://www.ncbi.nlm.nih.gov/pubmed/36643648 http://dx.doi.org/10.7717/peerj.14519 |
Ejemplares similares
-
An improved framework to predict river flow time series data
por: Nazir, Hafiza Mamona, et al.
Publicado: (2019) -
Extending density surface models to include multiple and double-observer survey data
por: Miller, David L., et al.
Publicado: (2021) -
Spatial interpolation for climate data : the use of GIS in climatology and meterology /
Publicado: (2007) -
Improving the prediction accuracy of river inflow using two data pre-processing techniques coupled with data-driven model
por: Nazir, Hafiza Mamona, et al.
Publicado: (2019) -
Confidence intervals for ratio of means of delta-lognormal distributions based on left-censored data with application to rainfall data in Thailand
por: Thangjai, Warisa, et al.
Publicado: (2023)