Cargando…
Predicting COVID-19 using lioness optimization algorithm and graph convolution network
In this paper, a graph convolution network prediction model based on the lioness optimization algorithm (LsOA-GCN) is proposed to predict the cumulative number of confirmed COVID-19 cases in 17 regions of Hubei Province from March 23 to March 29, 2020, according to the transmission characteristics o...
Autores principales: | Li, Dong, Ren, Xiaofei, Su, Yunze |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838306/ https://www.ncbi.nlm.nih.gov/pubmed/36686544 http://dx.doi.org/10.1007/s00500-022-07778-2 |
Ejemplares similares
-
Diagnosis of COVID-19 from blood parameters using convolutional neural network
por: Erol Doğan, Gizemnur, et al.
Publicado: (2023) -
COVID-19 detection from chest x-ray using MobileNet and residual separable convolution block
por: Tangudu, V. Santhosh Kumar, et al.
Publicado: (2022) -
Convolutional Neural Network for Track Seed Filtering at the CMS HLT
por: Di Florio, Adriano
Publicado: (2018) -
Deep Convolutional Networks for Event Reconstruction and Particle Tagging on NOvA and DUNE
por: Psihas, Fernanda
Publicado: (2017) -
Classification of decays involving variable decay chains with convolutional architectures
por: Tan, Justin
Publicado: (2018)