Cargando…
LSTM Network Integrated with Particle Filter for Predicting the Bus Passenger Traffic
The paper reports a combination of the deep learning technique and bayesian filtering to effectively predict the passenger traffic. The architecture of the model integrates the particle filter with the LSTM network. The time series sequential prediction is best achieved using LSTM network while Mark...
Autores principales: | Vidya, G S, Hari, V S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838469/ https://www.ncbi.nlm.nih.gov/pubmed/36687374 http://dx.doi.org/10.1007/s11265-022-01831-x |
Ejemplares similares
-
Prediction of Bus Passenger Traffic using Gaussian Process Regression
por: G S, Vidya, et al.
Publicado: (2022) -
An Improved STL-LSTM Model for Daily Bus Passenger Flow Prediction during the COVID-19 Pandemic
por: Jiao, Feng, et al.
Publicado: (2021) -
Passenger flow prediction in bus transportation system using deep learning
por: Nagaraj, Nandini, et al.
Publicado: (2022) -
Analysis of bus passenger comfort perception based on passenger load factor and in-vehicle time
por: Shen, Xianghao, et al.
Publicado: (2016) -
Assessment of the Risks of Occupational Diseases of the Passenger Bus Drivers
por: Golinko, Vasyl, et al.
Publicado: (2020)