Cargando…
A novel correlation Gaussian process regression-based extreme learning machine
An obvious defect of extreme learning machine (ELM) is that its prediction performance is sensitive to the random initialization of input-layer weights and hidden-layer biases. To make ELM insensitive to random initialization, GPRELM adopts the simple an effective strategy of integrating Gaussian pr...
Autores principales: | Ye, Xuan, He, Yulin, Zhang, Manjing, Fournier-Viger, Philippe, Huang, Joshua Zhexue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838478/ https://www.ncbi.nlm.nih.gov/pubmed/36683607 http://dx.doi.org/10.1007/s10115-022-01803-4 |
Ejemplares similares
-
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016) -
Gaussian processes for machine learning
por: Rasmussen, Carl Edward, et al.
Publicado: (2006) -
Correlated product of experts for sparse Gaussian process regression
por: Schürch, Manuel, et al.
Publicado: (2023) -
Discrimination between Gaussian process models: active learning and static constructions
por: Yousefi, Elham, et al.
Publicado: (2023) -
Gaussian Process Regression for Materials and Molecules
por: Deringer, Volker L., et al.
Publicado: (2021)