Cargando…
Machine learning identifies long COVID patterns from electronic health records
A machine learning algorithm identifies four reproducible clinical subphenotypes of long COVID from the electronic health records of patients with post-acute sequelae of SARS-CoV-2 infection within 30–180 days of infection; these patterns have implications for the treatment and management of long CO...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838487/ https://www.ncbi.nlm.nih.gov/pubmed/36639563 http://dx.doi.org/10.1038/s41591-022-02130-5 |
Ejemplares similares
-
A machine learning approach to identifying delirium from electronic health records
por: Kim, Jae Hyun, et al.
Publicado: (2022) -
Predicting opioid dependence from electronic health records with machine learning
por: Ellis, Randall J., et al.
Publicado: (2019) -
Using Natural Language Processing and Machine Learning to Identify Opioids in Electronic Health Record Data
por: McDermott, Sean P, et al.
Publicado: (2023) -
Using machine learning to detect sarcopenia from electronic health records
por: Luo, Xiao, et al.
Publicado: (2023) -
Subphenotyping depression using machine learning and electronic health records
por: Xu, Zhenxing, et al.
Publicado: (2020)