Cargando…
Leveraging edge-centric networks complements existing network-level inference for functional connectomes
The human connectome is modular with distinct brain regions clustering together to form large-scale communities, or networks. This concept has recently been leveraged in novel inferencing procedures by averaging the edge-level statistics within networks to induce more powerful inferencing at the net...
Autores principales: | Rodriguez, Raimundo X., Noble, Stephanie, Tejavibulya, Link, Scheinost, Dustin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838718/ https://www.ncbi.nlm.nih.gov/pubmed/36368501 http://dx.doi.org/10.1016/j.neuroimage.2022.119742 |
Ejemplares similares
-
Network controllability of structural connectomes in the neonatal brain
por: Sun, Huili, et al.
Publicado: (2023) -
Connectome-based machine learning models are vulnerable to subtle data manipulations
por: Rosenblatt, Matthew, et al.
Publicado: (2023) -
Large-scale differences in functional organization of left- and right-handed individuals using whole-brain, data-driven analysis of connectivity
por: Tejavibulya, Link, et al.
Publicado: (2022) -
The instability of functional connectomes across the first year of life
por: Dufford, Alexander J., et al.
Publicado: (2021) -
Power and reproducibility in the external validation of brain-phenotype predictions
por: Rosenblatt, Matthew, et al.
Publicado: (2023)