Cargando…
Efficient computation of adjoint sensitivities at steady-state in ODE models of biochemical reaction networks
Dynamical models in the form of systems of ordinary differential equations have become a standard tool in systems biology. Many parameters of such models are usually unknown and have to be inferred from experimental data. Gradient-based optimization has proven to be effective for parameter estimatio...
Autores principales: | Lakrisenko, Polina, Stapor, Paul, Grein, Stephan, Paszkowski, Łukasz, Pathirana, Dilan, Fröhlich, Fabian, Lines, Glenn Terje, Weindl, Daniel, Hasenauer, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838866/ https://www.ncbi.nlm.nih.gov/pubmed/36595539 http://dx.doi.org/10.1371/journal.pcbi.1010783 |
Ejemplares similares
-
AMICI: high-performance sensitivity analysis for large ordinary differential equation models
por: Fröhlich, Fabian, et al.
Publicado: (2021) -
Optimization and profile calculation of ODE models using second order adjoint sensitivity analysis
por: Stapor, Paul, et al.
Publicado: (2018) -
Mini-batch optimization enables training of ODE models on large-scale datasets
por: Stapor, Paul, et al.
Publicado: (2022) -
pyPESTO: a modular and scalable tool for parameter estimation for dynamic models
por: Schälte, Yannik, et al.
Publicado: (2023) -
Benchmarking of numerical integration methods for ODE models of biological systems
por: Städter, Philipp, et al.
Publicado: (2021)