Cargando…
Population codes enable learning from few examples by shaping inductive bias
Learning from a limited number of experiences requires suitable inductive biases. To identify how inductive biases are implemented in and shaped by neural codes, we analyze sample-efficient learning of arbitrary stimulus-response maps from arbitrary neural codes with biologically-plausible readouts....
Autores principales: | Bordelon, Blake, Pehlevan, Cengiz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839349/ https://www.ncbi.nlm.nih.gov/pubmed/36524716 http://dx.doi.org/10.7554/eLife.78606 |
Ejemplares similares
-
Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks
por: Canatar, Abdulkadir, et al.
Publicado: (2021) -
Leveraging Prior Concept Learning Improves Generalization From Few Examples in Computational Models of Human Object Recognition
por: Rule, Joshua S., et al.
Publicado: (2021) -
Neurons as Canonical Correlation Analyzers
por: Pehlevan, Cengiz, et al.
Publicado: (2020) -
Learning Curves for Noisy Heterogeneous Feature-Subsampled Ridge Ensembles
por: Ruben, Benjamin S., et al.
Publicado: (2023) -
Learning with few samples in deep learning for image classification, a mini-review
por: Zhang, Rujun, et al.
Publicado: (2023)