Cargando…

A small molecule improves diabetes in mice expressing human islet amyloid polypeptide

In recent years, the number of studies on islet and beta cell autophagy have substantially increased due to growing interest in the role of autophagy in maintaining cellular homeostasis in diabetes. In type 2 diabetes, human islet amyloid polypeptide (hIAPP) aggregates to form higher structure oligo...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhagat, Vriti, Verchere, C. Bruce
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839368/
https://www.ncbi.nlm.nih.gov/pubmed/36634699
http://dx.doi.org/10.1080/19382014.2022.2163829
Descripción
Sumario:In recent years, the number of studies on islet and beta cell autophagy have substantially increased due to growing interest in the role of autophagy in maintaining cellular homeostasis in diabetes. In type 2 diabetes, human islet amyloid polypeptide (hIAPP) aggregates to form higher structure oligomers and fibrils that are toxic to beta cells and induce islet inflammation. The primary mechanism of oligomer and fibril clearance in beta cells is through the autophagic pathway, a process that is impaired in type 2 diabetes. Thus, toxic oligomeric and fibrillar forms of hIAPP accumulate in type 2 diabetic islets. Recently, Kim et al. characterized the ability of a small molecule autophagy enhancer, MSL-7, to clear hIAPP oligomers in mice expressing hIAPP. Herein, we outline the primary findings of the study, limitations, and future directions to further investigate the therapeutic potential of autophagy enhancers to treat diabetes.