Cargando…
Force-induced ion generation in zwitterionic hydrogels for a sensitive silent-speech sensor
Human-sensitive mechanosensation depends on ionic currents controlled by skin mechanoreceptors. Inspired by the sensory behavior of skin, we investigate zwitterionic hydrogels that generate ions under an applied force in a mobile-ion-free system. Within this system, water dissociates as the distance...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839672/ https://www.ncbi.nlm.nih.gov/pubmed/36639704 http://dx.doi.org/10.1038/s41467-023-35893-7 |
Sumario: | Human-sensitive mechanosensation depends on ionic currents controlled by skin mechanoreceptors. Inspired by the sensory behavior of skin, we investigate zwitterionic hydrogels that generate ions under an applied force in a mobile-ion-free system. Within this system, water dissociates as the distance between zwitterions reduces under an applied pressure. Meanwhile, zwitterionic segments can provide migration channels for the generated ions, significantly facilitating ion transport. These combined effects endow a mobile-ion-free zwitterionic skin sensor with sensitive transduction of pressure into ionic currents, achieving a sensitivity up to five times that of nonionic hydrogels. The signal response time, which relies on the crosslinking degree of the zwitterionic hydrogel, was ~38 ms, comparable to that of natural skin. The skin sensor was incorporated into a universal throat-worn silent-speech recognition system that transforms the tiny signals of laryngeal mechanical vibrations into silent speech. |
---|