Cargando…
Transferring chemical and energetic knowledge between molecular systems with machine learning
Predicting structural and energetic properties of a molecular system is one of the fundamental tasks in molecular simulations, and it has applications in chemistry, biology, and medicine. In the past decade, the advent of machine learning algorithms had an impact on molecular simulations for various...
Autores principales: | Heydari, Sajjad, Raniolo, Stefano, Livi, Lorenzo, Limongelli, Vittorio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839695/ https://www.ncbi.nlm.nih.gov/pubmed/36697971 http://dx.doi.org/10.1038/s42004-022-00790-5 |
Ejemplares similares
-
Perspectives on
Ligand/Protein Binding Kinetics Simulations:
Force Fields, Machine Learning, Sampling, and User-Friendliness
por: Conflitti, Paolo, et al.
Publicado: (2023) -
Improving Small-Molecule Force Field Parameters in Ligand Binding Studies
por: Raniolo, Stefano, et al.
Publicado: (2021) -
DDT - Drug Discovery Tool: a fast and intuitive graphics user interface for docking and molecular dynamics analysis
por: Aureli, Simone, et al.
Publicado: (2019) -
Conformational plasticity and allosteric communication networks explain Shelterin protein TPP1 binding to human telomerase
por: Aureli, Simone, et al.
Publicado: (2023) -
Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase
por: Formoso, Elena, et al.
Publicado: (2015)