Cargando…
Investigation of early molecular alterations in tauopathy with generative adversarial networks
The recent advances in deep learning-based approaches hold great promise for unravelling biological mechanisms, discovering biomarkers, and predicting gene function. Here, we deployed a deep generative model for simulating the molecular progression of tauopathy and dissecting its early features. We...
Autores principales: | Kim, Hyerin, Kim, Yongjin, Lee, Chung-Yeol, Kim, Do-Geun, Cheon, Mookyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839697/ https://www.ncbi.nlm.nih.gov/pubmed/36639689 http://dx.doi.org/10.1038/s41598-023-28081-6 |
Ejemplares similares
-
A practical application of generative adversarial networks for RNA-seq analysis to predict the molecular progress of Alzheimer's disease
por: Park, Jinhee, et al.
Publicado: (2020) -
Unveiling OASIS family as a key player in hypoxia–ischemia cases induced by cocaine using generative adversarial networks
por: Lee, Kyoungmin, et al.
Publicado: (2022) -
Generative Adversarial Networks for Crystal Structure
Prediction
por: Kim, Sungwon, et al.
Publicado: (2020) -
Correction to “Generative Adversarial Networks
for Crystal Structure Prediction”
por: Kim, Sungwon, et al.
Publicado: (2022) -
Generating mobility networks with generative adversarial networks
por: Mauro, Giovanni, et al.
Publicado: (2022)