Cargando…
Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification
Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technolo...
Autores principales: | Nejedly, Petr, Kremen, Vaclav, Lepkova, Kamila, Mivalt, Filip, Sladky, Vladimir, Pridalova, Tereza, Plesinger, Filip, Jurak, Pavel, Pail, Martin, Brazdil, Milan, Klimes, Petr, Worrell, Gregory |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839708/ https://www.ncbi.nlm.nih.gov/pubmed/36639549 http://dx.doi.org/10.1038/s41598-023-27978-6 |
Ejemplares similares
-
Multicenter intracranial EEG dataset for classification of graphoelements and artifactual signals
por: Nejedly, Petr, et al.
Publicado: (2020) -
Intracerebral EEG Artifact Identification Using Convolutional Neural Networks
por: Nejedly, Petr, et al.
Publicado: (2018) -
Exploiting Graphoelements and Convolutional Neural Networks with Long Short Term Memory for Classification of the Human Electroencephalogram
por: Nejedly, P., et al.
Publicado: (2019) -
A Novel Statistical Model for Predicting the Efficacy of Vagal Nerve Stimulation in Patients With Epilepsy (Pre-X-Stim) Is Applicable to Different EEG Systems
por: Korit́áková, Eva, et al.
Publicado: (2021) -
Cognitive Processing Impacts High Frequency Intracranial EEG Activity of Human Hippocampus in Patients With Pharmacoresistant Focal Epilepsy
por: Cimbalnik, Jan, et al.
Publicado: (2020)