Cargando…

Prediction of continuous and discrete kinetic parameters in horses from inertial measurement units data using recurrent artificial neural networks

Vertical ground reaction force (GRFz) measurements are the best tool for assessing horses' weight-bearing lameness. However, collection of these data is often impractical for clinical use. This study evaluates GRFz predicted using data from body-mounted IMUs and long short-term memory recurrent...

Descripción completa

Detalles Bibliográficos
Autores principales: Parmentier, J. I. M., Bosch, S., van der Zwaag, B. J., Weishaupt, M. A., Gmel, A. I., Havinga, P. J. M., van Weeren, P. R., Braganca, F. M. Serra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839734/
https://www.ncbi.nlm.nih.gov/pubmed/36639409
http://dx.doi.org/10.1038/s41598-023-27899-4
Descripción
Sumario:Vertical ground reaction force (GRFz) measurements are the best tool for assessing horses' weight-bearing lameness. However, collection of these data is often impractical for clinical use. This study evaluates GRFz predicted using data from body-mounted IMUs and long short-term memory recurrent neural networks (LSTM-RNN). Twenty-four clinically sound horses, equipped with IMUs on the upper-body (UB) and each limb, walked and trotted on a GRFz measuring treadmill (TiF). Both systems were time-synchronised. Data from randomly selected 16, 4, and 4 horses formed training, validation, and test datasets, respectively. LSTM-RNN with different input sets (All, Limbs, UB, Sacrum, or Withers) were trained to predict GRFz curves or peak-GRFz. Our models could predict GRFz shapes at both gaits with RMSE below 0.40 N.kg(−1). The best peak-GRFz values were obtained when extracted from the predicted curves by the all dataset. For both GRFz curves and peak-GRFz values, predictions made with the All or UB datasets were systematically better than with the Limbs dataset, showing the importance of including upper-body kinematic information for kinetic parameters predictions. More data should be gathered to confirm the usability of LSTM-RNN for GRFz predictions, as they highly depend on factors like speed, gait, and the presence of weight-bearing lameness.